목차

01 연구개요	2
1_연구배경 및 목적	2
2_연구설계 및 내용	7
02 미세먼지 및 오존 관리현황	12
1_미세먼지 및 오존 관리여건	12
2_미세먼지·오존 시공간 변화 03 서울시 미세먼지·오존 통합관리 실증분석 1_미세먼지·오존 시민 건강영향 2 서우시 미세먼지·오존 새성 메커니즈 브성	28
03 서울시 미세먼지·오존 통합관리 실증분석	46
1_미세먼지·오존 시민 건강영향	46
2_서울시 미세먼지·오존 생성 메커니즘 분석	49
3_종합정리	71
04 해외도시의 대기환경 통합관리 사례분석	76
1_대기환경 통합관리 사례	76
2_시사점	101
05 서울시 미세먼지·오존 통합관리 전략 : 기본방향과 해결과제	106
1_개념모델 기반 미세먼지 오존 통합관리 방향	106
2_서울시 미세먼자·오존 통합관리 방안	109

참고문헌	115
부록	118
Abstract	126

丑

[丑	2-1]	중앙정부 대기환경관리 대책별 대기오염물질 달성 목표농도	13
[丑	2-2]	오존 유발물질(NOx, VOCs) 저감 계획	14
[丑	2-3]	서울시 민감취약군 대상 고동도 오존 대응 세부 행동요령	20
[丑	2-4]	서울시 대기오염물질 배출량 감축효과(2004년 대비 2014년 CAPSS 배출량 기준)	22
[丑	2-5]	서울시 BAU 대비 배출량 감축효과(BAU 대비 CAPSS 배출량 기준)	23
[丑	2-6]	수도권 대기환경관리 대책별 오염물질 저감실적	24
[丑	2-7]	지역별 오염물질 저감실적	24
[丑	2-8]	서울시 배출원별 PM10, PM2.5, NOx, VOCs 배출량 인벤토리(2015년 기준)	30
[丑	2-9]	서울시 대기환경기준 초과횟수	40
[丑	2-10] 초미세먼지 경보 발령 및 해제 기준	40
[丑	2-11] 초미세먼지 주의보 발령 기준(시간평균 농도) 변경 현황	41
[丑	3-1]	서울시 기상요소와 초미세먼지 농도의 상관관계	55
[丑	3-2]	서울시 기상요소와 오존 농도의 상관관계	56
[丑	3-3]	서울 오존 농도의 경년변화에 따른 회귀분석 결과(2000~2017년)	59
[丑	3-4]	회귀분석 예측값의 경년 변화에 대한 회귀분석 결과(2000~2017년)(기상조건 한정)	60
[丑	3-5]	수도권 초미세먼지 생성(1차, 2차 비율)	61
[丑	3-6]	서울시 NMHC/NOx 비율 분포	66
[丑	3-7]	서울시 NOx, NMHC 농도 범위별 고농도 오존(0.12ppm 이상) 출현율	69
[丑	3-8]	서울시 전구물질 농도 저감에 따른 고농도 오존(0.12ppm 이상) 연간 출현일수 변화	70
[丑	4-1]	도쿄도 대기환경 정책목표 : 광화학 스모그 및 초미세먼지(PM2.5)	80

[표 4-2] 미국의 AQI 단계	85
[표 4-3] EU 대기질 지침에 명시된 건강 보호를 위한 대기질 기준	99
[표 4-4] 2005년 대비 EU 28개국의 오염물질별 저감비율	100

그림

[그림	1-1]	미세먼지 오존 통합관리 연구체계	6
[그림	2-1]	서울형 미세먼지 비상저감조치 시민 주도 8대 대책	18
[그림	2-2]	수도권 3개 사도 PM10과 NO ₂ 농도변화(2001~2014)	21
[그림	2-3]	서울시 연도별 O ₃ 농도와 8시간 기준 초과횟수 변화(2001~2014)	22
[그림	2-4]	대기환경관리 정책 변화	26
[그림	2-5]	서울시 대기오염물질 배출량 변화 추이(2005~2015년)	29
[그림	2-6]	서울시 PM10, PM2.5 배출원별 배출 기여도(2015년 CAPSS 기준)	30
[그림	2-7]	서울시 NOx, VOCs 배출원별 배출 기여도(2015년 CAPSS 기준)	31
[그림	2-8]	서울시 자치구별 미세먼지(PM10, PM2.5) 배출량(2015년 기준)	32
[그림	2-9]	서울시 자치구별 미세먼지(NOx, VOCs) 배출량(2015년 기준)	33
[그림	2-10] 서울시 연평균 미세먼지(PM10, PW2.5) 농도 및 PW2.5/PM10 비율 변화(2005~2017년	34
[그림	2-11] 서울시 연도별 PM2.5 농도 변화	35
[그림	2-12] 서울시 월별시간대별 PM2.5 농도 변화	35
[그림	2-13] 서울시 풍향별 미세먼지 오염분포(2017년)	36
[그림	2-14] 서울시 풍향 바람장미(2017년)	36
[그림	2-15] 서울시 연평균 O₃ 농도 변화(1991~2017년)	37
[그림	2-16] 서울시 월별시간대별 O3 농도 변화	37
[그림	2-17]] 전국 O₃ 연평균 농도(2016년)	38
[그림	2-18] 서울시 연도별 O₃ 농도 변화	38
[그림	2-19] 서울시 미세먼지 주의보 발령 현황	41
[그림	2-20] 서울시 초미세먼지 주의보 발령 추정일수(2013~2017)	42

[그림 2-21] 서울시 오존 주의보 발령 현황	42
[그림 2-22] 서울시 초미세먼지, 오존 동시 '나쁨' 시간수 변화	43
[그림 2-23] 초미세먼지·오존 관련 최근기사	44
[그림 3-1] 주요 국가별 PM2.5, O₃ 영향 조기사망률 비교(1990년, 2015년)	47
[그림 3-2] 대기오염으로 인한 국가별 조기 사망자수 비교 통계	48
[그림 3-3] 초미세먼자·오존 발생 특성	50
[그림 3-4] 서울시 오존과 NO ₂ 백분위수 농도 변화	51
[그림 3-5] 서울시 NO ₂ , NOx 농도 및 NO ₂ /NOx 비율 변화	51
[그림 3-6] 서울시 NO, NO ₂ , O ₃ 시간대별 농도 변화(2013~2017년 평균)	53
[그림 3-7] 서울시 NOx, NMHC, O₃ 연평균 농도 변화	54
[그림 3-8] 서울시 NOx, O3, NMHC 시간 농도 변화(2013~2017년)	54
[그림 3-8] 서울시 NOx, O ₃ , NMHC 시간 농도 변화(2013~2017년) [그림 3-9] 서울시 연도별 일사량 변화(4~9월) [그림 3-10] 서울시 일최고 기온 변화(4~9월) [그림 3-11] 서울시 오전 풍속평균 변화(4~9월)	57
[그림 3-10] 서울시 일최고 기온 변화(4~9월)	57
[그림 3-11] 서울시 오전 풍속평균 변화(4~9월)	58
[그림 3-12] 회귀분석 예측농도 연 변화(좌 : 평균 기상조건, 우 : 최적 기상조건)	60
[그림 3-13] 수도권 초미세먼지 주요 배출원	61
[그림 3-14] 미세먼지 평균 성분(KORUS-AQ 연구결과)	62
[그림 3-15] 유기적 미세먼지와 광화학적 지표 간의 상관관계(좌 : 포름알데히드, 우 : NO_2+C	93) 62
[그림 3-16] 서울시 일사량일 최고 기온과 고농도 오존의 상관관계	63
[그림 3-17] 서울시 일사량주간 오전 풍속과 고농도 오존의 상관관계	64
[그림 3-18] 서울시 일정 범위 기상조건에서 전구물질과 오존 최고농도의 상관관계	64
[그림 3-19] 서울시 질소산화물과 오존 최고농도 출현비율의 관계	65
[그림 3-20] 서울시 비메탄 탄화수소와 오존 최고농도 출현비율의 관계	65
[그림 3-21] 서울시 NMHC/NOx 비율과 오존 최고농도 출현비율의 관계	65
[그림 3-22] NOx 대비 VOCs 비율에 따른 오존 등농도 곡선	67

[그림 3-23] 서울시 2013~2017 연평균 전구물질 농도 연간 출현일수(a)와	68
O ₃ 농도 0.12ppm 이상인 날의 출현일수(b)	
[그림 3-24] 서울시 2013~2017 연평균 NOx 30%, NMHC 30% 농도 저감 후 전구물질	
농도의 연간 출현일수(a)와 O₃ 농도 0.12ppm 이상 연간 출현일수(b)	70
[그림 4-1] 도쿄도의 대기오염물질 농도 변화와 주요 대책	77
[그림 4-2] 도쿄도 대기환경측정국의 환경기준 달성률 변화	78
[그림 4-3] 도쿄도 PM2.5 연평균 농도 변화	78
[그림 4-4] 도쿄도 오존 농도 0.12ppm 초과일수 변화	78
[그림 4-5] 도쿄도 PM2.5 일평균과 Ox 일 최고 8시간 농도의 관계	79
[그림 4-6] 도쿄도 대기환경 정책목표와 주요 대책	83
[그림 4-7] 미국 지역별 PM2.5 구성성분 농도 변화	84
[그림 4-8] 미국 35개 도시의 O3, PM2.5 통합 AQI 100을 초과한 날의 총합계 변화	86
[그림 4-9] 미국 35개 도시의 O3, PM2.5 통합 AQI 100을 초과한 날의 총합계	86
[그림 4-10] 2016 AQMP에 제시된 국가 대기질 기준 달성 기한	87
[그림 4-11] SCAQMD의 대기질 모델링 결과	88
[그림 4-12] 뉴욕의 PM2.5 농도 변화	90
[그림 4-13] 뉴욕의 PM2.5에 의한 조기사망과 사망률	91
[그림 4-14] Alberta PM2.5·O₃ 연간 자료 분석 과정	94
[그림 4-15] Alberta주의 PM2.5, O3 농도 현황	95
[그림 4-16] Alberta 대기권역 PM2.5·O ₃ 관리 체계(2010년 달성목표)	96
[그림 4-17] Alberta 대기권역 관리 체계(2015년 달성목표)	96
[그림 4-18] EU 국가의 PM2.5, O₃ 농도 현황	97
[그림 4-19] EU-28개국 PM2.5, NOx, NMVOCs 주요 배출기여도	98
[그림 5-1] 개념모델(Conceptual Model) 적용 미세먼지·오존 통합관리 정책방향	108
[그림 5-2] 서울시 대기오염측정소 현황	110