정책토론회
유비쿼터스 사회 도래에 따른
서울시 교통정보체계 개편방안
2006. 12. 27

목차
Ⅰ Ubiquitous와 교통
Ⅱ Ubiquitous 시대의 교통정보 시스템
Ⅲ U시대의 교통정보시스템을 둘러싼 주요쟁점
Ⅳ 서울시 대응전략
I 부. Ubiquitous와 교통

국가 IT 839 전략

국가 IT 839 전략

U-Korea
(지능 기반사회)

- 국민 삶의질 향상
- 산업생산성 향상
- 공공서비스 향상
U-Seoul

U-Seoul의 6대 분야

- 복지 (U-Care)
- 문화 (U-Fun)
- 환경 (U-Green)
- 산업 (U-Business)
- 행정/도시관리 (U-Governance)
- 교통 (U-Transportation)

- 서울시 교통관리센터 (TOPIS) 중심
 - 서울 내 대중교통정보와
 국제/광역 교통정보 연계
- 도로/교통 정보를 실시간으로 제공할 수 있는
 기반 조성

U-T란?

이동에 소요되는 비용 최소 추구
 → 요금, 기름값, 소요시간

How can I arrive to destination as soon as possible?

기술의 발달

의식의 변화

이동 중에도 업무와
생활의 연속성 추구

What do I do during going to
destination?

ITS

U-Transportation
U시대 도래로 인한 교통정보체계 변화

교통정보 융합

Activity
(목적지, 도착시간, 비용 등)

정보 사용자
출발시간, 교통수단
경로, 비용, 주차장정보

교통상황, 도로상황

교통관리주체

출발시간
교통수단, 경로

정보 제공자

예약
중계

이벤트 정보
혼합정보

사용시설

U시대 도래로 인한 교통정보체계 변화

VMS에서 차량단말기 체계로 변화

<table>
<thead>
<tr>
<th>블록정</th>
<th>다수를 상대로 한 교통정보 제공</th>
</tr>
</thead>
<tbody>
<tr>
<td>응원역대로</td>
<td>전호</td>
</tr>
<tr>
<td>응원역대로</td>
<td>성수</td>
</tr>
<tr>
<td>노들강</td>
<td>성산</td>
</tr>
<tr>
<td>스트립짐</td>
<td>5 번</td>
</tr>
<tr>
<td>운행지 교통정보</td>
<td>도행지 교통정보</td>
</tr>
</tbody>
</table>

개인별 맞춤형 교통정보 제공

VMS

정체, 사고, 통행시간 등의 단순 교통정보

차량 단말기

개인별 맞춤 교통정보, 보안, 부가기능

저속, 저용량

고속, 고용량

실시간 동적 교통정보

차량관리 및 경로안내

안전 및 보안 서비스

부가정보(인터넷) 서비스

II 부. Ubiquitous 시대의 교통정보시스템
1단계: 기존정보시스템 기반의 텔레매틱스 사업체계

교통정보 통합배포 시스템

기존 정보시스템

민간교통정보
- 로티스
- 리얼텔레콤
- SK(?)

공공교통정보
- 건교부
- 경찰청
- 기타

기타 관련정보
- 기상청
- 관광정보

텔레매틱스 정보센터 (TELIC) → 텔레매틱스 서비스 사업자 (TSP) → 서비스 이용자

1단계: 기존정보시스템 기반의 텔레매틱스 사업체계

일본의 체계

VICS
 도시고속도로 교통정보센터
 경찰청 교통정보센터
 고속도로 교통정보센터

일본도로교통정보센터

민간교통정보사업자
- 교통정보가공
- 부가 컨텐츠

운전자
수요자
2단계: USN(변용통신망)에 의한 민간중심 교통정보제공체계

- 무선랜, 셀룰러, DMB 등 무선통신을 통한 텔레메틱스 서비스 제공
- RFID, UWB, Zigbee 등 근거리 무선통신을 이용한 도로와 차량 간 통신

도로와 차량간 통신
RFID, UWB, Zigbee

2단계: USN(변용통신망)에 의한 민간중심 교통정보제공체계

SK(주)의 사례

- 시내버스, 고속버스, 택시, Probe
- GPS
- 유선 네트워크 (HSDPA, CDMA)
- 교환기
- 유선통신망
- 기지국 기반 보안
- Nate Drive 기반
- 광물: 상용차량 등
2단계: USN(범용통신망)에 의한 민간중심 교통정보제공체계

이동통신 및 인터넷 기술의 발달

- 이동성을 기반으로 현재 2G에서 4G 통신으로 발전
- 이동전화 시스템에 전송속도의 고속화를 통한 4세대로 진화
- 무선랜에 이동성을 부여하여 IP 기반의 4세대로 진화

![이동통신 및 인터넷 기술의 발달 도표]

텔레매틱스 최신 기술 동향

<table>
<thead>
<tr>
<th>구분</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>- ETRI를 중심으로 텔레매틱스용 Map Air Update 기술 개발 중
- DMB 기반 플랫폼 및 개방형 서비스 응용 프로토콜 기술 개발
- 고정밀 차량 측위기술과 실감 네비게이션 기술 개발 중</td>
</tr>
<tr>
<td>미국</td>
<td>- DOT 주관 VII 프로젝트에서 텔레매틱스 기술 개발 중
- DSC(DSRC Consortium)에서는 WAVE 통신기술 개발 중
- 조지아텍에서는 GPS를 이용한 Value pricing 시스템을 개발 중</td>
</tr>
<tr>
<td>유럽</td>
<td>- 2002년 3GT 프로젝트에서 OSGI 기반 플랫폼 기술 개발 및 테스트베드를 통한 검증
- 2004년부터 GST 프로젝트에서 차량 안전 서비스 중심의 텔레매틱스 기술을 개발 중</td>
</tr>
<tr>
<td>일본</td>
<td>- Internet ITS 프로젝트에서 PHS와 DSRC, 무선랜 통합기술 개발 중
- OKI, Tokyo 등은 차량간 통신을 통한 추돌방지 서비스 개발 중</td>
</tr>
</tbody>
</table>
Ⅲ부. U시대의 교통정보시스템을 둘러싼 주요쟁점

| 중산 1: 교통정보 제공과 관/민의 역할 |

<table>
<thead>
<tr>
<th>서울시의 교통정보 제공주체 현황</th>
</tr>
</thead>
<tbody>
<tr>
<td>공공(관)</td>
</tr>
<tr>
<td>정보수집체계</td>
</tr>
<tr>
<td>도시고속도로교통관리시스템</td>
</tr>
<tr>
<td>경찰청교통정보시스템</td>
</tr>
<tr>
<td>경찰청 UTIS(사업 중단 중)</td>
</tr>
<tr>
<td>서울시 TOPIS</td>
</tr>
<tr>
<td>교통방송</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>기타 케이블 TV 등등</td>
</tr>
</tbody>
</table>
서울시 도시고속도로 교통관리시스템 개요

시스템 구성 및 연장
도시고속도로 총연장 195.7km, 공사비 1,270억원(4단계 시스템 설치계획 포함)

<table>
<thead>
<tr>
<th>구분</th>
<th>대상도로</th>
<th>연장 (Km)</th>
<th>공사기간</th>
<th>추진현황</th>
</tr>
</thead>
<tbody>
<tr>
<td>1단계</td>
<td>내부순환도로, 강변북로 (성산대교~성수JC)</td>
<td>40.1</td>
<td>'00.5~'02.5</td>
<td>'02.6월부터 운영중</td>
</tr>
<tr>
<td>2단계</td>
<td>1공구 강변북로 잔여구간 북부간선도로</td>
<td>18.8</td>
<td>'01.11~'04.5</td>
<td>'04.6월부터 운영중</td>
</tr>
<tr>
<td>2공구 올림픽대로 (한강교량, 노들길)</td>
<td>41.8</td>
<td>'03.10~'05.9</td>
<td>'05.10월부터 운영중</td>
<td></td>
</tr>
<tr>
<td>3단계</td>
<td>동부간선도로, 경부고속도로</td>
<td>48.7</td>
<td>'05.04~'07.04</td>
<td>공사중 (LG CNS)</td>
</tr>
<tr>
<td>4단계</td>
<td>서부간선도로, 강남순환도로</td>
<td>46.3</td>
<td>'06년 이후</td>
<td>향후계획</td>
</tr>
</tbody>
</table>

고속국도 교통관리

지능형교통체계 기본계획 (안)

교통관리분야 소요예산
중기(2007~2012) : 1조 6천억
장기(2013~2020) : 약 3조 2천억
ROTIS 시스템 구성 (전용망)

<table>
<thead>
<tr>
<th>수도권 교통정보 수집범위</th>
<th>부산시 교통정보 수집범위</th>
</tr>
</thead>
<tbody>
<tr>
<td>서비스 도로</td>
<td>노드수</td>
</tr>
<tr>
<td>452개</td>
<td>1,787</td>
</tr>
</tbody>
</table>

SK(주) 시스템 구성 (범용망)

수 집
다양한 수집재원 확보

가 공
GPS 기반의 특화된 맵

제 공
전국 제공용 맵에 표출

특화/상세한 교통정보 생산이 가능한 전국 교통정보 수집용 Network 제조 구축 연료

고도화된 Map Matching Algorithm을 이용한 정확한 교통정보 생성

다양한 수집재원에 대한 Fusion/기공 일교차 구현
DMB, TPEG 관련 최신 동향 (신문기사)

- 삼성전자와 국내 최초로 지상파 DMB의 데이터 방송 기반 교통정보 서비스인 TPEG을 지원하는 유대 전화 단말 ‘SPH-B5800’ 출시한다고 발표함.
 [2006.12.21 디지털데일리]

- 삼성전자가 개발한 TPEG폰(SPH-B5800)’은 KTF용으로 개발했으나 조만간 SK텔레콤과 LG텔레
 콤용으로도 나올 예정임.
 [2006.12.21 한국경제]

- DMB 단말 전문업체 아이온공은 저상파와 위성 DMB를 하나의 단말기로 선택해 볼 수 있는 자료용
 네비게이션(모델명: 아이온듀오)을 내년 1월 출시할 예정임.
 [2006.12.13 아이티타임스]

- 현대오토넷은 지난 10월까지 TPEG 단말시약을 독점했던 KTF에 이어 8일 TPEG 서비스
 를 지원하는 네비게이션 단말기 (모델명: HNA-7031)를 출시함.
 [2006.12.8 아이뉴스24]

- KBS는 지난 10월 30일 TPEG 본 서비스를 시작함.
- MBC는 TPEG를 올해 말이나 내년 초 상용화할 계획이며 "TPEG 서비스에는 혼잡계통정보, 통행상
 황정보, 관심지역정보, 안전운전정보 등이 포함될 것"이라고 밝힘.
- SBS도 내년 초 TEPG 상용화가 목표이지만 아직 확실히 정해진바 없음.
 [2006.11.28 전자신문]

DMB를 통한 교통정보 제공(TPEG) 사업자 유형

<table>
<thead>
<tr>
<th>구분</th>
<th>내용</th>
</tr>
</thead>
</table>
| KBS & 현대자동차 컨소시엄 | • Before Market에 중점을 두고 전용단말기를 기반으로 하여 교통정보를 제공함
 • 교통정보 : 로티스와 한국도로공사 등의 정보를 이용하여 5분 단위로 제공 |
| MBC & SK 컨소시엄 | • After Market에 중점을 두고 PDA, PMP 기반으로 함
 • 교통정보 : SK 엔트렉을 통해 전국의 1,4000대의 프로브카를 이용하여 5분 단위로 제공 |
| YTN 컨소시엄 | • 네비게이션 솔루션 시장의 85%를 차지하는 9개 중소 네비게이션 업체와 YTN으로 구성됨
 • 교통정보 : 로티스나 도로공사의 교통정보를 이용하고, 항후 도로교통안전단위 교통정보센터사업이 완료되면 그 정보를 이용하여 정보를 제공 |
쟁점1: 교통정보 제공과 관/민의 역할

교통정보의 본질

행 주 13 분
성 산 6 분

구간거리

과거 현시점 미래

주제간 수집정보 중복

시설관리공단
ROTIS
경찰청
리얼텔레콤

서울시 도시고속도로 구간의 교통정보 수집 중복
쟁점 1: 교통정보 제공과 관/민의 역할

불특정다수 → 개인 맞춤형
유선전화 ↔ 휴대폰 ➔ 공중전화 집전화 ➔ 유명무실
VMS

쟁점 2: 기존 ITS형 교통정보시스템 + TELIC체계의 필요성

기존 ITS 사업
먼간교통정보사업
경찰청교통정보사업
건교부교통정보사업
서울시 TOPIS
한국철도공사
서울시 도시철도공사

TELIC
TAGO

U-T
쟁점 2: 기존 ITS형 교통정보시스템 + TELIC체계의 필요성

TELIC의 가능과 역할

 dung E

TAGO의 가능과 역할

정보제공 매체
제2장: 기존 ITS형 교통정보시스템 + TELIC체계의 필요성

- 텔레매틱스 시장의 급진전

한편, 위성 DMB의 경우 현재 누적
가입자 94만 명을 기록하고 있으며, 연내 가입자 100만명을 예상하고 있음

제2장: 기존 ITS형 교통정보시스템 + TELIC체계의 필요성

- 교통정보수집

- 이동통신사

- 교통정보제공

- 공공 ITS사업

- 3.5G

- 4G

- 교통정보제공

- 이동통신 기술

- 차내단말기
쟁점3: 전용시스템의 확장인가? 범용시스템의 활용인가?

개별전용시스템 구축의 한계

전용시스템
BMS
FTMS
승용차 요일제
UTIS

통합
유지관리비용 문제

채널(INFO)에서 채널(EXIT)으로

시장구축 초창기 전용시스템

투자비용과 사업비 많이 소요

항후 전용시스템 통합 및 범용시스템
IV부. 서울시 대응전략
교통정보체계를 돌리싼 여건변화

<table>
<thead>
<tr>
<th>지급까지</th>
<th>앞으로</th>
</tr>
</thead>
<tbody>
<tr>
<td>유선통신</td>
<td>무선통신</td>
</tr>
<tr>
<td>공급자 주도</td>
<td>사용자 주도</td>
</tr>
<tr>
<td>관 주도</td>
<td>민간참여 확대</td>
</tr>
<tr>
<td>전용 통신망</td>
<td>범용 통신망</td>
</tr>
<tr>
<td>교통 전용</td>
<td>교통+Activity정보 융합</td>
</tr>
</tbody>
</table>

민간과 공공의 역할

민간

- 텔레매틱스 차원에서
- 교통정보 + Activity
- Two-way로 주고
- Real Time On-Demand Route Guidance 기능

공공

- 도로 및 교통 관리 차원에서
- CCTV 중심의 교통감시시스템과 순찰 시스템을 구축
- VMS를 주축으로 One-way 교통소통상황정보 제공
- 교통정보제공을 위한 최소한의 교통정보수집체계 구축
서울시 기본방향

기존 서울시 교통정보시스템 (ITS사업) → 여행시간정보 중심에서 교통관리, 도로관리 중심 시스템으로 재정비
신규 교통정보관련 시스템 → 전용시스템 구축은 지양, 단 기존 유형의 신규사업은 전략적 교통관리 측면으로 정비 방향 수정
U-Seoul 중 U-T 사업 → 기존 관련시스템의 통합(Integration) 지양 U-Zone 등 특화된 시범사업 위주로 시행

서울시 대응전략

- 2000년 수립된 서울시 ITS 기본계획을 IT 여건변화와 U-Seoul의 관점에서 재조명하는 ‘서울시 ITS 중장기 수립 연구’ 필요
- 기존 시스템에 국한하지 말고 교통관련 전반을 자동적으로 수집·분석하는 범용네트워크에 의한 광의적 교통정보시스템을 catch-me형 개념에서 새롭게 개발 및 추진
서울시 대응전략

- 텔레매틱스 시장의 조기 형성을 위한 차내단말기 보급 확산 등 시 차원의 지원방안 모색

- 공공중심의 전용시스템이 아닌 민간 범용시스템을 활용한 교통정보의 질, 안전, 재난관리 체계구축을 위한 법/제도 및 공공부문 지원 강화

- 공급자, 관주도 ITS 사업의 한계성을 인식하고 사용자, 민간 주도의 새로운 U-T 시대 ITS 사업 추진체계 설정

감사합니다.