보도설치기준 국제비교연구

A Comparative Study on Sidewalk Design Guidelines of Seoul and World Cities

2006

서울시정개발연구원

Seoul Development Institute
<table>
<thead>
<tr>
<th>연구책임 정석</th>
<th>도시계획부 연구위원</th>
</tr>
</thead>
<tbody>
<tr>
<td>연구원 김신정</td>
<td>도시계획부 연구원</td>
</tr>
<tr>
<td>자문위원 강병근</td>
<td>건국대학교 교수</td>
</tr>
<tr>
<td>노관섭</td>
<td>건설기술연구원 수석연구원</td>
</tr>
<tr>
<td>민만기</td>
<td>녹색교통 사무국장</td>
</tr>
<tr>
<td>양승우</td>
<td>서울시립대학교 교수</td>
</tr>
<tr>
<td>한상주</td>
<td>동일기술공사 기술연구소장</td>
</tr>
<tr>
<td>권기욱</td>
<td>서울시 도로관리과장</td>
</tr>
</tbody>
</table>

이 보고서의 내용은 연구진의 견해로서 서울특별시의 정책과는 다를 수도 있습니다.
목 차

제1장 연구의 개요
  1. 연구의 배경 및 목적 .......................................................... 2
  2. 연구의 내용 및 방법 .......................................................... 4

제2장 서울시 주요지역 보도 조성 실태조사
  1. 조사의 개요 ........................................................................ 8
  2. 구역별 조사결과 ................................................................. 12
  3. 보도 문제의 유형화 ............................................................. 22

제3장 문제 유형별 원인분석 및 국내외 기준비교
  1. 과도하게 높은 보도턱 ......................................................... 45
  2. 평탄하지 않은 보도 ............................................................. 47
  3. 유효폭이 좁은 보도 ............................................................. 50
  4. 무분별하게 배치된 보도시설물 ............................................. 51
  5. 차량진출입으로 인한 보도 단절 ............................................ 53
  6. 보도 위 불법 주차 및 주행 ................................................... 56
  7. 안전하지 않는 횡단보도 ..................................................... 57
  8. 기타 .................................................................................. 60
제4장 세계 대도시 보도설치기준 비교

1. 서울 .................................................................................................................62
2. 도쿄 ...............................................................................................................69
3. 뉴욕 ..........................................................................................................75
4. 런던 ..........................................................................................................85
5. 기타(파리, 베를린) ..................................................................................91
6. 비교 및 종합 ............................................................................................97

제5장 서울시 보도설치기준 개선방향

1. 우리나라 보도설치기준의 문제점 .........................................................102
2. 서울시 보도설치기준의 현황 및 문제점 ..............................................104
3. 서울시 보도설치기준의 개선방향 .......................................................105

참고문헌

.................................................................................................................. 108

[부록]

부록 1. 서울시 보도설치기준 개선을 위한 정책토론회 요지 .............................118
부록 2. 각국의 보도설치 관련 법규 및 기준 소개 .......................................122
제1장
연구의 개요

1. 연구의 배경 및 목적
2. 연구의 내용 및 방법
1. 연구의 배경 및 목적

가. 연구의 배경

 걷고 싶은 서울 만들기 성과와 한계

1990년대 초반부터 시민단체를 중심으로 서울의 보행환경을 개선하려는 보행권운동이 시작된 이래로 걷고 싶은 서울 만들기가 10여년 이상 지속적으로 추진되어 오고 있다. 그 결과로 서울의 보행환경은 점차 개선되고 있으나 여전히 해결되지 않은 문제들도 남아있다. 보도의 턱이 지나치게 높고 보도 위에 각종 시설물들이 무분별하게 배치되며, 보도 위의 주차차량과 보도를 단절하는 차량출입시설물들이 보행자의 안전과 편의를 저해하고 있다.

교통약자에 대한 배려와 관련기준 강화 추세

1980년대 이후 세계 각국은 장애인들의 권리와 권익을 보장하기 위한 법률을 제정하고 특히 장애인과 교통약자들이 불편 없이 공공시설과 서비스를 이용하고 접근할 수 있도록 관련법규와 기준, 지침들을 수정 보완하고 있다.


이러한 추세를 고려할 때 보도의 설치와 유지관리는 이제 정상인의 관점보다는 장애인 등 교통약자의 관점에서 새롭게 접근하고 개선되어야 한다. 장애인들도 불편 없이 접근하고 이용할 수 있도록 보행환경이 갖추어져야 하기 때문이다.

서울시 보도설치기준 개선 필요

보도는 보행환경의 가장 기본적인 요소라 할 수 있다. 대한민국의 수도이며 세계도시를 지향하는 서울을 걷고 싶은 도시로 만들기 위해서는 서울의 보도 수준을 획기적으로 개선하는 일이 시급하다.
모든 계층의 사람들이 불편 없이 접근하고 이용할 수 있도록 서울의 보도를 개선하기 위해서는 먼저 보도를 만들고 유지, 관리하는 근거라 할 수 있는 보도설치기준에 대한 연구와 개선이 필요하다.

특히, 세계 각국과 선진 도시들이 교통약자의 이동권을 보장하기 위해 관련법령을 제정하고 보도조성과 관련된 기준과 지침들을 새롭게 개선하고 있는 추세이므로, 세계도시들의 보도설치기준과의 비교연구를 통해 서울의 보도설치기준을 획기적으로 개선할 필요성이 크게 제기되고 있다.

나. 연구의 목적

서울시 보도 조성 실태 및 문제점 분석
서울의 보도 조성 수준과 문제를 파악하기 위해 서울 도심부와 강남의 주요 가로를 대상으로 보도연석 높이, 경사도, 유효보도폭, 차량출입시설, 횡단보도 탁날추기 등 보도 조성 실태를 파악하고 대표적인 문제들을 유형화하며 그 원인을 보도설치기준의 관점에서 분석한다.

세계 대도시의 보도설치기준 비교
세계 대도시들이 쾌적하고 수준 높은 보행환경을 조성하기 위해 운영하고 있는 보도설치에 관한 법령과 기준을 검토하고 비교한다. 이를 위해 일본의 도쿄도, 미국의 뉴욕시, 영국의 대런던(Greater London)을 주요 비교대상으로 선정하여 관련 법령 및 기준을 분석하고, 파리시와 베를린시 등 기타 도시들에 대해서도 서울에 시사점을 주는 주요한 사항들에 대해 추가적으로 검토한다.

서울시 보도설치기준 개선방향 제시
서울의 보도 조성 실태와 문제점 분석 및 세계 대도시들의 보도설치기준에 대한 비교 연구를 바탕으로 서울시 보도설치기준의 개선방향을 제시하고자 한다. 특히, 서울의 보도수준을 획기적으로 개선하기 위해서는 서울시 자체의 보도설치기준을 조속히 수립할 필요성이 있고, 새롭게 수립될 서울시 보도설치기준에는 우리나라의 현행 보도설치법령 및 기준이 가지고 있는 문제점들이 보완 및 개선되어야 하며, 선진 도시들의 보도설치기준을 참고하여 수준 높은 기준을 수립할 수 있도록 제시하고자 한다.
2. 연구의 내용 및 방법

연구의 내용

서울시 주요지역 보도 조성 실태조사
서울시의 보도설치 실태를 파악하기 위하여 보행량이 많은 주요 5개 도로(종로, 홍인문로, 강남대로, 서초로, 올림픽로)를 선정, 각 도로별 3곳의 보도폭, 보도턱, 보도경사, 차량진출입부, 횡단보도 연석높음 등 보도설치현황을 조사하였다.

문제 유형별 원인분석
서울시 보도설치현황 조사결과를 토대로 대표적인 문제들을 다음과 같이 7개의 문제 유형으로 구분하고 그 원인을 보도설치 관련 법규 및 기준에 초점을 두고 분석하였다.

유형1. 과도하게 높은 보도턱
유형2. 평탄하지 않은 보도
유형3. 유효폭이 좁은 보도
유형4. 무분별하게 배치된 보도시설물
유형5. 차량진출입으로 인한 보도 단절
유형6. 보도 위 불법 주차 및 주행
유형7. 안전하지 않는 횡단보도

국내외 보도설치 관련 법규 및 기준 비교
한국, 일본, 미국, 영국 등 각국의 보도설치 관련 법규와 기준을 비교하고 서울특별시, 도쿄도, 뉴욕주, 런던, 파리 등 세계 대도시의 보도설치 또는 장애인 이동편의 관련 법규와 기준을 조사하고 비교 분석하였다.

보도설치기준 개선방향 검토
현행 서울시 보도설치기준의 실태와 문제점을 규명하고, 세계 대도시들의 보도설치 기준 및 관리운영방식을 비교분석함으로써 서울시 보도설치기준의 문제점을 정리하고 개선방향을 도출하였다.
연구의 방법

문헌조사
기존의 서울시 및 우리나라의 보도설치기준을 검토하고, 아울러 비교 대상국의 주요 도시인 뉴욕, 런던, 파리, 도쿄 등 세계 대도시들의 보도설치기준을 비교분석함으로써 서울시 보도설치기준의 개선방향을 도출하였다.

실측조사
서울시의 보도설치 현황을 알아보기 위하여 서울시 수치지형도(1/1,000)와 위성사진을 활용하여 5개 주요도로를 대상으로 다음의 항목을 중심으로 하여 보도설치현황을 조사하였다.

보도턱: 연석높이, 보차도면 높이차
보도경사: 중단경사, 횡단경사
보도폭: 보도폭, 유회보도폭, 가로시설물 설치폭
차량진출입부: 진입부 폭, 턱 낙추기 폭, 경사
횡단보도: 턱 낙추기 폭, 경사

인터넷 검색 및 국외출장
한국, 일본, 미국, 영국 등 각국의 법규와 기준이 소개된 관련 정부사이트와 서울특별시, 동경도, 뉴욕주, 대런던, 파리시 등의 지역 정부 홈페이지의 내용을 중심으로 인터넷 검색을 실시하였다.

또한 세계 대도시의 상세한 보도설치 현황조사 및 관련기준 검토를 목적으로 런던, 파리, 뉴욕, 워싱턴 DC 등 현장을 방문하고, 관계자 면담 및 현장조사를 병행하였다.
제2장

서울시 주요지역 보도 조성 실태조사

1. 조사의 개요
2. 구역별 조사결과
3. 보도 문제의 유형화
1. 조사의 개요

조사목적

서울시 보도의 일반적인 현황을 파악하고 문제점을 찾아보기 위해 인지도가 높고 보행자의 통행이 많은 대표 가로를 선정하여,

첫째. 서울시의 보도 설치현황을 파악하고,
둘째. 서울시 보도 조성의 주요 문제점 및 그 원인을 규명하며,
셋째. 이러한 문제의 발생에 보도설치기준이 실제로 어떻게 영향을 미치고 있는지를 분석하였다.

조사기간 및 방법

조사기간

서울시 보도 현황조사는 2006년 8월 1일부터 10월 31일까지 3개월에 걸쳐 실시되었다. 보도설치기준에 관한 조사항목과 실측대상을 선정하기 위한 1차 조사는 2006년 8월 1일부터 9월 30일까지 진행되었다. 1차 조사 이후 보도 조성 실태를 상세히 실측하는 2차 조사는 2006년 10월 23일부터 27일까지 실시되었다.

조사방법

서울시 수치지형도(1/1,000, 2003년 제작)를 기초도면으로 하고, 도시공학과 대학원생을 3인 1조의 조사원으로 편성하여 현장 실측조사 및 사진촬영을 실시하였다. 보도턱과 보도폭, 횡단보도폭, 가로시설물 폭 등 각종 길이는 줄자를 이용하여 측량하였고, 레이저 광파기를 이용하여 수평수직거리 측정함으로써 보도의 경사를 구하였다.
조사지역

조사지역 선정

서울시의 가로 중에서 인지도가 높고 보행량이 많은 대표가로를 선정하기 위해, 최근 5년간 1일 평균 지하철 승하차인원이 100,000인 이상인 지하철역 주변가로를 1차 대상으로 선정한 뒤, 도심부에서 종로와 홍인문로를, 강남지역에서 강남대로와 서초로 및 올림픽대로를 선정하였다.

표 5년 평균 1일 지하철역 이용객수(2002~2006)

<table>
<thead>
<tr>
<th>순위</th>
<th>역</th>
<th>5년 평균 1일 이용객수</th>
<th>순위</th>
<th>역</th>
<th>5년 평균 1일 이용객수</th>
<th>순위</th>
<th>역</th>
<th>5년 평균 1일 이용객수</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>강남</td>
<td>184,540</td>
<td>6</td>
<td>신림</td>
<td>129,040</td>
<td>11</td>
<td>종각</td>
<td>106,286</td>
</tr>
<tr>
<td>2</td>
<td>잠실</td>
<td>155,686</td>
<td>7</td>
<td>사당</td>
<td>125,626</td>
<td>12</td>
<td>선릉</td>
<td>106,254</td>
</tr>
<tr>
<td>3</td>
<td>삼성</td>
<td>153,263</td>
<td>8</td>
<td>서울역</td>
<td>123,871</td>
<td>13</td>
<td>교대</td>
<td>101,977</td>
</tr>
<tr>
<td>4</td>
<td>고속터미널</td>
<td>149,532</td>
<td>9</td>
<td>신촌</td>
<td>122,342</td>
<td>14</td>
<td>동대문운동장</td>
<td>100,547</td>
</tr>
<tr>
<td>5</td>
<td>종로3가</td>
<td>136,809</td>
<td>10</td>
<td>강변</td>
<td>120,214</td>
<td>15</td>
<td>역삼</td>
<td>99,979</td>
</tr>
</tbody>
</table>

조사지역
조사지역
- 서울시 도심부(종로, 홍인문로)
- 강남지역(강남대로, 서초로, 올림픽로)
- 기타 문제 보유지역

조사내용
보도에 대한 실측조사는 크게 일반보도부, 차량진출입부, 횡단보도부 세부분으로 나누어 실시했고, 구체적인 조사내용은 다음의 표와 같다.

<table>
<thead>
<tr>
<th>보도</th>
<th>턱</th>
<th>연석높이(보차도면 높이차)</th>
</tr>
</thead>
<tbody>
<tr>
<td>경사</td>
<td>종단경사, 횡단경사</td>
<td></td>
</tr>
<tr>
<td>폭</td>
<td>보도폭, 유효보도폭, 보도 위 가로사설물 설치폭</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>차량진출입부</th>
<th>진입폭, 연석높이</th>
<th>턱낮추기 : 폭, 경사(진행방향/옆면), 연석낮춤 높이</th>
</tr>
</thead>
<tbody>
<tr>
<td>횡단보도</td>
<td>연석높이, 점자블록 설치</td>
<td></td>
</tr>
<tr>
<td></td>
<td>턱낮추기 : 폭, 경사(진행방향/옆면), 연석낮춤 높이</td>
<td>안전섬 : 설치유무, 연석높이, 연석낮춤 높이, 도로차선 수</td>
</tr>
<tr>
<td>기타</td>
<td>보도 위 주차/주행</td>
<td></td>
</tr>
</tbody>
</table>
보도폭은 연석과 대지경계를 나타내는 연석사이의 거리를 측량함
유효폭은 보도폭에서 보도시설물의 설치폭을 뺀 값임
평탄부는 턱낮추기를 한 부분에서 평탄함을 유지하는 부분임

종단경사는 보도의 진행방향과 평행한 방향의 경사를 측량함
횡단경사는 보도의 진행방향과 직각인 방향의 경사를 측량함
연석높이는 차도면과 연석면 높이차를 측량함
연석낮춤 높이는 턱낮추기를 한 경계부의 차도 경계의 높이차
2. 구역별 조사결과

가. 조사구역 A : 종로(세종로~종로3가)

조사지점 : #1 광화문우체국~수출보험공사 사이
          #2 수출보험공사 옆 모전교 입구
          #3 종로3가 피카디리 극장 입구

A구역은 평균 1일 이용객수가 100,000인 이상인 종로3가역과 종각역을 통과하며, 단성사, 피카디리 극장, 서울극장과 귀금속 도소매상가가 밀집되어 있어 보행량이 많은 지역이다. 청계천이 복원되면서 이 지역을 통행하는 보행자가 더욱 증대되고 있는 추세이다.
조사구역 A
종로(세종로-종로3가, 8차선)

- 보도면적이 15cm 내외로 보도면이 평탄하고 중단경사가 적음
- 일부 구간 보도와 인접대지와의 높이차로 인해 횡단경사 발생
- 지하철, 왕기구, 가로수 등의 시설물이 보도 중앙에 위치하여 통행 불편
- 보도의 전체 보도폭은 넓으나 도로시설물 설치로 인해 상당부분 유요 보도폭이 1.5m~2.0m내외로 좁아짐
- 차도가 8차선이나 횡단보도 내 교통섬은 설치되지 않음

<table>
<thead>
<tr>
<th>조사지점</th>
<th>보도폭</th>
<th>보도경사</th>
<th>보도폭</th>
<th>횡단폭도의 면적높임</th>
<th>보도 포장재</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>면적높이(cm)</td>
<td>중단(%)</td>
<td>횡단(%)</td>
<td>전체(m)</td>
<td>유요폭(m)</td>
</tr>
<tr>
<td>기준</td>
<td>25</td>
<td>5.6</td>
<td>4.0</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>#1</td>
<td>17.5</td>
<td>0.1</td>
<td>5.9</td>
<td>8.1</td>
<td>2.1</td>
</tr>
<tr>
<td>#2</td>
<td>16.0</td>
<td>1.9</td>
<td>3.3</td>
<td>4.3</td>
<td>1.5</td>
</tr>
<tr>
<td>#3</td>
<td>13.5</td>
<td>1.3</td>
<td>6.8</td>
<td>4.3</td>
<td>1.2</td>
</tr>
</tbody>
</table>

[기준] : 도로의 구조 및 시설기준에 관한 규칙, 교통약자의 이동편의증진법 시행규칙(이탤릭체)

조사구역 A : 종로(세종로-종로3가)의 보도현황
나. 조사구역 B : 흥인문로(동대문운동장~동대문)

조사지점 : 
#4 동대문운동장사거리(은지로5가방향)  
#5 동대문 종합시장 주차장 입구  
#6 동대문역 9번 출구 앞

B구역은 동대문운동장역과 동대문역을 연결하는 8차선의 흥인문로 일대로 많은 관광객과 쇼핑객들의 통행량이 많은 곳이다. 또한 청계천 복원을 계기로 상권을 활성화시키기 위해 이전보다 다양한 이벤트를 마련하는 등 새롭게 각광받고 있는 지역이다.
조사구역 B

홍인문로(동대문운동장~동대문, 8차선)

- 보도면적 20cm 내외로 보도면이 평탄하고 중단 및 횡단경사 적절함
- 공사현장의 편스켓 및 각종 도로시설물로 인해 유휴보도폭 퇴소
- 다수 오토바이의 보도 위 불법주차로 보행 정체 발생
- 횡단보도의 연장폭계간에 설치된 도로시설물(맨홀사각)로 인하여 과도한 기울기 및 압면경사 발생
- 차도가 8차선이나 횡단보도 내 교통섬은 설치되지 않음

<table>
<thead>
<tr>
<th>조사지점</th>
<th>보도폭</th>
<th>보도경사</th>
<th>보도면적</th>
<th>횡단보도면적 및 연장폭계간 연석높이</th>
<th>횡단보도의 연장폭계간 연석높이</th>
<th>보도폭</th>
<th>횡단보도의 연장폭계간 연석높이</th>
<th>횡단보도의 연장폭계간 연석높이</th>
</tr>
</thead>
<tbody>
<tr>
<td>기준</td>
<td>25</td>
<td>5.6</td>
<td>4.0</td>
<td>1.5</td>
<td>0.9</td>
<td>2.0</td>
<td>8.3</td>
<td>10.0</td>
</tr>
<tr>
<td>#4</td>
<td>20.5</td>
<td>2.4</td>
<td>0.1</td>
<td>4.3</td>
<td>1.2</td>
<td>8.2</td>
<td>0.0</td>
<td>21.7</td>
</tr>
<tr>
<td>#5</td>
<td>21.0</td>
<td></td>
<td></td>
<td>9.7</td>
<td>2.1</td>
<td>8.4</td>
<td>0.0</td>
<td>8.1</td>
</tr>
<tr>
<td>#6</td>
<td>23.5</td>
<td>1.1</td>
<td>2.9</td>
<td>9.5</td>
<td>1.3</td>
<td>4.1</td>
<td>2.0</td>
<td>5.6</td>
</tr>
</tbody>
</table>

[기준] : 도로의 구조·시설기준에 관한 규칙, 교통약자의 이동편의증진법 시행규칙

조사구역 B : 홍인문로(동대문운동장~동대문)의 보도현황
다. 조사구역 C : 서초로(교대역~서초1교)

조사지점 : #7 교대역 7번 출구 앞
#8 교대역 1번 출구 앞
#9 서초로 현대한의원~삼풍프라자 사이

C구역의 서초로는 서울중앙지방법원과 서울교대가 인접하고, 도로 중앙에 분리대가 설치되어 있으며, 이 구간의 보도턱 연석높이는 25cm 내외로 비교적 높다.

1일 승하차인원이 100,000인이 넘는 교대역 출입구가 집중 배치된 교대역 사거리에 횡단보도가 설치되어 있지 않다. 보행자가 도로를 횡단하려면 교대역 지하철역사와 연결된 지하도를 이용해야하는 불편함을 초래한다. 이러한 지하철출입구가 직선거리로 100m 남짓한 거리에 3개소 설치되어 있어 보도의 유효폭에 영향을 주기도 한다.
조사구역 C

서초로(교대역~서초1교)

- 조사지점 셀 곳 모두 연석이 설치기준(25cm)보다 높게 설치된 것으로 조사됨
- 연석이 높아 횡단보도 연석높음으로 인해 과도한 횡단경사가 발생함
- 불라도가 설치되었음에도 불구하고 보도 위를 통행하는 차량 때문에 보도블록 및 연석이 파손된 곳들이 종종 발견됨.

<table>
<thead>
<tr>
<th>조사지점</th>
<th>보도폭</th>
<th>보도경사</th>
<th>보도폭</th>
<th>횡단보도 연석높음</th>
<th>보도포장재</th>
</tr>
</thead>
<tbody>
<tr>
<td>기준</td>
<td>25</td>
<td>5.6</td>
<td>4.0</td>
<td>1.5 2.0 0.9 2.0 8.3 10.0</td>
<td></td>
</tr>
<tr>
<td>#7</td>
<td>25.0</td>
<td>1.3</td>
<td>3.9</td>
<td>4.9 1.3 3.0 8.5 8.8 8.0</td>
<td>석재판형 벽돌</td>
</tr>
<tr>
<td>#8</td>
<td>31.5</td>
<td>12.9</td>
<td>8.8</td>
<td>6.2 2.4 3.0 7.0 5.9 12.0</td>
<td>벽돌</td>
</tr>
<tr>
<td>#9</td>
<td>28.0</td>
<td>4.9</td>
<td>6.3</td>
<td>5.2 2.9 4.0 0.0 11.5 27.6</td>
<td>시멘트판형 벽돌</td>
</tr>
</tbody>
</table>

[기준] 도로의 구조·시설기준에 관한 규칙, 교통약자의 이동편의증진법 시행규칙

<그림> 조사구역 C : 서초로(교대역~서초1교)의 보도현황
라. 조사지역 D : 강남대로(강남역~교보타워 사거리)

조사지점 : #10 교보타워사거리 버스중앙차로 횡단보도 앞
#11 강남역 1번 출구 농협 강남지점 앞
#12 강남역 2번 출구 미래에셋증권 앞

D구역은 교통이 편리하며, 요식업체가 집중되어 있어 모임이나 만남의 장소로 각광을 받고 있는 지역으로 1일 평균 지하철 이용객이 약 185,000명으로 서울 지하철역 중 최대규모이다.

보험량이 많음에도 불구하고 강남역 사거리에는 횡단보도가 설치되어 있지 않으며, 버스 중앙차로제 실시에 따라 설치된 버스정류장이 안전섬 역할을 하고 있다.
조사구역 D  강남대로(강남역~교보타워 사거리)

• 보도 중앙에 가로수 식재, 보도 위 노점상으로 인하여 보행자 통행에 방해가 됨.
• 가로의 동편이 지방적으로 높으나 대부분 지역의 보도가 잘 조성되어 평탄성을 유지하고 있음.
• 분식과 구두, 옷, 액세서리 등을 파는 노점상들이 도로변을 따라 형성되어 있어
출퇴근시간대나 주말, 공휴일 등 보행량이 많을 때 통행에 불편을 초래함.

<table>
<thead>
<tr>
<th>조사 지점</th>
<th>보도폭</th>
<th>보도경사</th>
<th>보도폭</th>
<th>횡단보도의 연석낮춤</th>
<th>보도 턱낮추기 높이(cm)</th>
<th>경사(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>기준</td>
<td>25</td>
<td>5.6</td>
<td>4.0</td>
<td></td>
<td>1.5</td>
<td>0.9</td>
</tr>
<tr>
<td>#10</td>
<td>18</td>
<td>1.0</td>
<td>7.0</td>
<td>4.6</td>
<td>1.2</td>
<td>7.9</td>
</tr>
<tr>
<td>#11</td>
<td>22</td>
<td>5.2</td>
<td>5.3</td>
<td>7.6</td>
<td>1.8</td>
<td>4.2</td>
</tr>
<tr>
<td>#12</td>
<td>17</td>
<td>1.7</td>
<td>2.4</td>
<td>6.8</td>
<td>1.1+ 0.35</td>
<td>–</td>
</tr>
</tbody>
</table>

기준: 도로의 구조·시설기준에 관한 규칙, 교통약자의 이동편의증진법 시행규칙(이탤릭체)

<그림> 조사구역 D : 강남대로(강남역~교보타워 사거리)의 보도현황
마. 조사지역 E : 올림픽로(잠실역~송파구청)

조사지점 : #13 잠실역 7번 출구 롯데캐슬플라자 앞
   #14 한라시그마타워~잠실역 9번 출구 사이
   #15 송파구청사거리(교통회관 앞)

E구역은 버스와 지하철 교통의 환승이 편리하며, 롯데월드, 롯데백화점, 롯데캐슬플라자 등이 입지하고 있어, 연중 내내 보행량이 많은 지역이다. 1일 평균 잠실역 승하차 인원은 약 156,000건으로 강남역에 이어 두 번째로 큰 규모이다.

현재 공터로 남아있는 올림픽대로를 중심으로 남측 부지가 개발되면 현재보다 더욱 유인력을 갖게 될 것으로 전망된다.
조사구역 E 올림픽로(잠실역~송파구청)

• 환단보도의 연석높이 시 연면 경사길이가 철야 경사 발생
• 보도 위에 자전거도로를 병행 설치함으로써 보행에 불편 초래
• 보도의 전체 보도폭은 넓으나 노점상, 가로수 등으로 인해 유효보도폭이 협소

<table>
<thead>
<tr>
<th>조사지점</th>
<th>보도폭</th>
<th>보도경사</th>
<th>보도폭</th>
<th>차량진출입부 및 횡단보도의 연석높춤</th>
<th>보도 포장재</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>연석높이(cm)</td>
<td>종단수(%)</td>
<td>횡단수(%)</td>
<td>전체연폭(m)</td>
<td>유효폭(m)</td>
</tr>
<tr>
<td>기준</td>
<td>25</td>
<td>5.6</td>
<td>4.0</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>#13</td>
<td>19.0</td>
<td>0.0</td>
<td>3.1</td>
<td>7.7</td>
<td>0.9</td>
</tr>
<tr>
<td>#14</td>
<td>17.5</td>
<td>2.2</td>
<td>0.6</td>
<td>3.8</td>
<td>6.4</td>
</tr>
<tr>
<td>#15</td>
<td>17.5</td>
<td>0.7</td>
<td>3.2</td>
<td>5.2</td>
<td>8.0</td>
</tr>
</tbody>
</table>

[기준] : 도로의 구조·시설기준에 관한 규칙, 교통약자의 이동편의증진법 시행규칙(이탤릭체)

그림 조사구역 E : 올림픽로(잠실역~송파구청)의 보도현황
### 3. 보도 문제의 유형화

<table>
<thead>
<tr>
<th>유형 1</th>
<th>과도하게 높은 보도턱</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="유형 1" /></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>유형 2</th>
<th>평탄하지 않는 보도</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image2.png" alt="유형 2" /></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>유형 3</th>
<th>유효폭이 좁은 보도</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image3.png" alt="유형 3" /></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>유형 4</th>
<th>무분별하게 배치된 보도시설물</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image4.png" alt="유형 4" /></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>유형 5</th>
<th>자랑진출입으로 인한 보도단절</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image5.png" alt="유형 5" /></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>유형 6</th>
<th>보도 위 불법 주차 및 주행</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image6.png" alt="유형 6" /></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>유형 7</th>
<th>안전하지 않는 횡단보도</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image7.png" alt="유형 7" /></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>기타</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image8.png" alt="기타" /></td>
<td></td>
</tr>
</tbody>
</table>

[그림자료: 접근성을 고려한 보도와 산책로 디자인 I (1999)에서 일부 인용]
가. 과도하게 높은 보도턱

차문이 걸릴 만큼 높은 보도

높은 연석 때문에 보도면과 차도의 높이차가 커지면서 자동차 문을 열 때 문이 보도에 걸리는 경우 또는 사람이 타고 나서 차체가 아래로 내려가 문이 보도턱에 걸려 문을 닫기가 어려운 경우가 종종 발생한다.

실제로 조사지역 #8 서초로 교대역 1번 출구 근처의 연석높이는 현재 적용되는 도로의 구조시설 기준에 관한 규칙의 25cm보다 높은 27cm, 29cm, 31cm였다.
반면 영국 런던, 미국 워싱턴, 프랑스 파리의 이미지에서 볼 수 있듯이 외국의 경우 연석의 높이가 10~15cm로 연석높이가 낮아 자동차문을 쉽게 여닫을 수 있다. 또한 과도한 연석높이는 높낮이가 푹 낮추기 할 때 연석경사로의 진행방향 경사에 영향을 줄 수 있다.
턱 낮추기(Curb-Cutting)가 안 되어 단차가 있는 보도

보도가 이면도로나 횡단보도와 교차하는 곳에서는 보도턱을 낮추어 보도의 연속성을 유지하도록 하고 있으나, 보도 턱 낮추기가 제대로 시공되지 않은 곳을 종종 발견할 수 있다.

턱 낮추기는 휠체어나 유모차 이용자들이 원활한 통행을 위해 반드시 필요하지만, 보차도면 높이차를 완전히 없게 할 경우 (0cm) 시각장애인들이 보차도를 구분할 수 없게 되므로 대개 보차도면 높이차는 2cm로 규정하고 있다.

서울의 경우 횡단보도와 만나는 지점은 대부분 턱 낮추기가 되어 있으나 일부 보차도면의 높이차가 규정보다 크게 설치된 지역이 있고, 보도와 이면도로가 만나는 부분의 경우에는 턱 낮추기가 제대로 시행되지 않은 곳을 종종 발견할 수 있다.
나. 평탄하지 않는 보도

턱 낮추기로 경사가 심해진 보도

연석높이가 매우 높거나, 연석높이가 낮은 편이라도 상대적으로 보도폭이 좁은 경우 턱 낮추기 시공을 하게 되면 연석경사로의 진행방향 경사가 급하게 된다.

우리나라의 대부분의 경우 보도와 이면도로의 교차부분에서 주도로와 이면도로의 차도를 연결하고, 겹어낸 보도 대신에 횡단보도를 설치, 연석경사로를 시공한다. 이 때 연석이 높거나, 수출입 보험공사 앞처럼 인근 건물의 바닥면을 유지하기 위해 보도면을 높여 급한 경사를 발생시키기도 한다.

외국의 경우는 우리나라와 달리 연석높이도 낮고, 상대적으로 넓은 보도폭을 유지하고 있어, 미국 워싱턴과 프랑스 파리의 사례와 같이 턱 낮추기 부분에서 완만한 경사를 이루게 된다.

더 나아가 영국의 사례에서는 보도와 카드의 교차 시 차량보다는 보행자를 우선으로 하여 보도의 레벨은 유지하고, 차도를 높임으로써 보도의 평탄성과 연속성을 유지한다.
인접건물 바닥면이 높아 기울어진 보도

전물에 지을 때 보도에 인접한 전물의 바닥면을 높이고, 그에 맞추어 보도면의 높이를 변형시키는 경우가 많다. 이 경우 건물의 전자와 같이 횡단경사가 발생하게 되어 보행에 불편을 주게 된다.

아차산 1번 출구의 경우에는 지형상 우측 지반고가 좌측보다 상대적으로 높아 횡단경사가 발생하였고, 이곳에 횡단보도를 설치하면서 턱날추기를 시공함에 따라 경사도가 더욱 심해졌다.

보도포장이 잘못되어 평탄하지 않는 보도

현재 우리나라의 보도블록 포장을 원칙으로 하고 있으나, 이전에 시공되어진 보도 중에는 아스팔트포장이 된 것들이 있는데, 보도 아래에 매설된 시설물 교체나 보수공사 할 때마다 매번 아스팔트를 걷어내고 다시 덧씌워 포장하면서 보도면이 매끄럽지 못하게 된다.

보도블록은 과중한 하중을 받을 때, 깨지거나 블록 간 틈이 벌어지기 쉬우며, 사춤모래의 시공이 불량하거나 보도면이 고품질이 되지 않게 될 수 있다. 이로 인해 미끄러운 환경을 조성하게 되어 보행자 통행에 불편을 초래하기도 한다.

시공불량 및 유지관리 소홀

때때로 가로수의 뿌리가 자라서 지반이 용기됨에 따라 근처 보도면까지 같이 용기되는 것을 볼 수 있다. 또한 맨홀설치 시공이 잘못되어 주변 보도면보다 움푹 들어가거나 용기된 것을 볼 수 있다.

평탄하지 않는 보도에서는 우천 시 빗물이 차로로 흘러가지 못하고 보도면에 고이게 됨으로써 보행자가 미끄러지기 쉬운 환경을 조성하여, 보행자 통행에 불편을 초래하기도 한다.
제 2장 서울시 주요지역 보도 조성 실태조사

강남역 1번 출구

광진구 아차산역 1번 출구

동대문구 전농동

정복구

삼풍플라자 앞

서초역

남부터미널역 5번 출구

성북구 삼풍백화점 옆

서초역

강남구 강남대로 정동교회 앞

동대문구 휘경동

삼풍플라자 옆

구로구 고척동

종로구 해회역 2번 출구

미국 워싱턴

영국 런던
다. 유효폭이 좁은 보도

보도폭이 좁게 설치된 경우

현재 우리나라의 최소보도 폭 기준은 1.5m이나 소공동 사례와 같이 기준치 1.5m보다 작은 폭을 갖는 보도가 드물지만 종종 발견된다.

육교, 지하도 설치로 보도가 좁아진 경우

보도의 원래 폭은 기준치를 만족시키나 육교나 지하도 출입구가 설치되어 실제통행이 가능한 유효폭은 기준을 지키지 못한 경우가 종종 발생한다.

각종 시설물 설치로 보도가 좁아진 경우

원래의 보도폭은 최소기준을 만족시키나, 가로수나 환기구의 설치로 인해 보도의 유효폭이 좁아진 경우도 흔히 볼 수 있다.
차량, 오토바이 주정차로 보도가 좁아진 경우

보도 위 오토바이와 차량 등의 주정차는 보행자가 통행할 수 있는 유효보도폭을 좁게 하여 보행자의 통행에 불편을 주며, 때때로 보행자의 안전을 위협하기도 한다.

육외광고물, 노점, 상품적치로 좁아진 경우

특히 상권이 활성화된 지역에서는 보도 위에 옥외광고물이 난립하고, 상점 앞 보도에 상품을 적치·진열하거나 노점상의 설치로 보도폭이 좁아진 경우가 많다.
라. 무분별하게 배치된 보도시설물

보도 중앙에 위치한 가로수

가로수를 보도의 중앙부에 배치하여 보도의 유효폭을 이등분하게 됨으로써 실제로 통행 가능한 폭은 좁아진다. 폭 5m미만의 보도에서 가로수를 중앙에 식재하는 것은 보행자의 통행에 불편을 끼친다.

보도 위에 돌출된 지하철 환기구

대학로의 지하철 환기구는 보도의 중앙부에 돌출되어 설치됨으로써 보행자가 통행 가능한 유효폭을 양분하여 통행 불편함을 느끼게 한다. 대학로의 경우 학교의 규제로 인해 일부 구간의 경우는 지하철 환기구를 설치할 수 없지만, 대부분의 경우 보도의 중앙에 설치되어 있어 보행자의 편의를 절망시킨다. 이는 보도의 유효폭을 좁게 만든 결과로 보수적으로 보다 적절한 위치에 설치하도록 권고하고자 한다.
보행을 방해하는 보도시설물

교대역 사례에서 볼 수 있듯이 가로수 두 그루와 그 사이에 돌출된 지하철환기구가 나란히 설치됨으로 인해 유효보도폭이 협소해져 보행에 불편함을 초래한다.

반면, 외국의 사례를 보면, 보행자 통행만을 위한 구역과 가로시설물을 배치하는 구역을 따로 정하여 나란히 배치함으로써 시설물 난립으로 인해 보도폭이 좁아지는 경우는 좁처럼 보기 드물다.
마. 차량진출입으로 인한 보도 단절

보도를 단절시키는 차량출입시설

차량진출입시설을 설치할 때 보행자보다는 차량을 우선시 하는 풍조에 따라 보도를 제거하고, 차도의 연속성을 유지하게 시공하여 보행자의 불편을 초래한다.
반면 외국의 경우는 철저하게 보행자를 우선적으로 배려하고 있어 보도의 연속성을 확보하기 위해 고원식 횡단보도를 설치하거나 차도를 높이는 등, 보도의 높이를 그대로 유지하는 쪽을 선택하고 있다.
차량진출입부의 또 다른 문제는 차량진출입부가 지나치게 많이 설치되어 보도의 연속성을 훼손하고 보행자의 통행을 빈번하게 단절시킨다는 점이다.

차량출입시설의 보도경사가 심해진 경우

차량출입시설을 설치할 때, 보도의 레벨보다는 침수나 기타의 이유로 지반을 높여 시공하게 됨으로써 보도에 횡단경사를 발생시킨다.

전자센터의 지하주차장 출입부의 경우 인접 건물의 주차장 출입구와 접하고 있다. 두 곳의 차량출입부의 경사가 다름을 사례이미지의 횡단보도의 모양으로 확인할 수 있다.
바. 보도 위 불법 주차 및 주행

보도 위 주차 및 주행

보도위의 주차는 다양한 형태로 나타나는데, 빈번하게 발생되는 주차행태를 보면 보도 턱에 한쪽 바퀴를 걸치는 개구리식 주차와 건축선을 후퇴하면서 생기는 건물 전면부에 주차하는 경우이다.

차량의 보도 주차는 주차하기 위해 차량이 보도를 횡단하거나 보도 위를 주행하여 보행자의 안전을 위협하거나 통행에 불편을 초래하기도 한다.

때때로 건물앞 주차를 위해 횡단보도의 턱낮추기 부분을 활용하기도 하여, 횡단보도 앞 블라드가 기울어져 있는 경우를 종종 발견할 수 있다.(우면삼거리 횡단보도)

중구 무교동
서초구 예술의 전당 근처
침룡플라자 옆

우면삼거리
중랑구 면일초등학교 후문
교대역 1번 출구 근처
사. 안전하지 않는 횡단보도

안전섬이 설치되지 않은 횡단보도

최근 중앙 버스전용차선 도입으로 버스정류장을 중심으로 하는 일부 중앙분리대가 보행자의 도로 횡단에 있어 안전섬 역할을 하고는 있으나 아직까지는 그를 제외한 대부분의 횡단보도에서 안전섬을 찾기가 어렵다.

사례에서처럼 12차선인 태평로나 8차선인 종로, 7차선인 우면로 어디에도 보행자를 위한 안전섬이 설치되어 있지 않다.

이와 달리 외국의 경우는 앞서 언급한 도로들보다 폭이 좁은 4-5차선 도로에서도 안전섬을 설치하는 것을 흔히 볼 수 있다. 안전섬의 종류 또한 매우 다양하다.

단순히 콘크리트 기둥 2개를 횡단보도 중앙에 세워두기만 해도 안전함을 향상시킬 수 없고, 방향을 한번 꺾어 횡단할 수 있게 한 것, 미드블록에 휠체어가 간신히 통과할 정도의 폭만 단차를 없앤 것, 심지어 프랑스 사례에서는 한 횡단보도에 두 곳의 안전섬을 설치해 둔 경우까지 볼 수 있었다.
짧은 보행자 신호시간

보행신호시간을 충분히 제공하지 않아 태평로 사례에서 보는 것처럼 보행자가 신호가 빨간색으로 바뀔 때까지도 횡단보도 끝까지 도달하지 못한 경우를 흔히 볼 수 있다.

미국의 보행자신호시간

반면 미국의 워싱턴에서는 노약자와 장애인의 통행을 배려하여 폭 20m 도로에 대한 보행자 횡단시간을 73초로 하고 있다.
일본 보행신호 제어장치

일본의 가나가와현에서는 노약자 및 장애인들의 편안한 길 건너기를 적극적으로 배려하는 정책을 펼치고 있다. 누르면 보행신호시간을 길게 하는 보행신호 연장용 누름버튼을 횡단보도 옆에 설치하고 있다.

펜던트형 발신기를 보급하여 펜던트를 착용한 사람이 횡단보도 근처에 다다르면 자동적으로 센서가 이를 감지하여 보행자 횡단시간을 연장해주는 시스템을 도입하고 있다.

일본의 보행자 지원정보 통신시스템 사례(가나가와현)

교차점의 상황이나 안전한 보행경로 등의 정보를 음성, 화상, 문자 등 다양한 형태로 제공하며, 시력이 약한 사람을 위해 음성으로 안내한다.

이 시스템은 손에 가진 휴대용 단말기를 보행자용 신호의 옆에 설치한 신호등을 향하게 하여 작동하는 것으로, 휴대 단말기로부터 음성이 출력되면서 방향이나 신호상태 등 보행자가 이동하는데 필요한 정보를 제공하는 역할을 한다.

한편 노인이나 거동이 불편한 사람들을 위해 횡단시간을 연장할 수도 있으며, 24시간 운영되고 있다.
가나가와현 통신시스템(PICS)

A. FM전파로 접근을 알림
1. 장치는 교차로에 접근함을 알리는 FM방송을 함.
2. 휴대단말기를 지닌 보행자가 장치서비스 권내에 들어가게 되며, 단말장치의 스피커나 진동으로 보행자지원 신호등이 있음을 알 수 있음.

A. 적외선으로 교차로 안내
3. 발광부에서 보도를 향해 교차로명 및 진행방향을 알리는 메시지를 적외선으로 발신.
4. 보행자는 휴대단말장치를 손에 들고 음성버튼을 누르면서 천천히 좌우로 혼들여 발광부를 찾음.
5. 휴대단말장치의 스피커 음성안내를 통해 교차로 지명 및 진행방향을 알 수 있음.
6. 발광부 방향(음성이 제일 잘 들리고 좌우로 혼들리는 중심방향)으로 가면 교차로에 도착.

A. 적외선으로 교차로 안내
7. 횡단보도 안쪽의 발광부에서 신호등의 신호상태(파란/빨간)을 알리는 음성방송.
8. 단말기의 스피커 음성으로 신호등의 신호상태와 진행방향을 알 수 있음.
   파란 신호가 되었을 때, 횡단하기 시작함.

일본 가나가와현 (http://www.police.pref.kanagawa.jp)
횡단보도 없는 교차로

그림에서와 같이 잠실역 사거리, 종로5가역 사거리, 강남역 사거리 등 보행량이 많은 곳임에도 불구하고 횡단보도가 설치되어 있지 않아 보행자의 불편을 초래하는 경우가 많다.

횡단보도 연석낮춤부를 이용한 차량진입

우리나라에서 횡단보도 턱 낮추기를 시공할 때 턱 낮추기 폭을 횡단보도의 폭으로 하는 경우가 많다. 넓게 시공된 턱 낮추기부에서 대부분 차량이 출입하지 못하도록 블라드를 설치하지만, 우면삼거리의 사례에서처럼 일부 차량들은 블라드 주변을 손상시키고 그 곳을 통해 보도로 통행하게 된다.

미국 워싱턴 DC의 사례를 살펴보면, 횡단보도 턱 낮추기 폭을 한 대의 휠체어 폭만큼으로 하여 턱낮추기를 시공한 부분을 통해 차량이 진출입하는 것을 예방하고 있다.
아. 기타

점자블록이 잘못 설치된 경우

시각장애인에게 방향을 안내하는 유도블록이 영동한 방향을 가리키고 있어, 오히려 보행자의 안전을 위협하기도 한다.

동서울 버스터미널 앞의 사례에서는 횡단보도 철거 시 횡단보도만 제거하고 횡단보도의 위치를 알리는 유도블록을 제거하지 않은 경우이며, 구의사거리의 사례는 횡단보도의 방향과 유도블록의 유도방향이 일치하지 않는 경우이다.

블라드로 인한 보행장애

투박한 형태의 높이가 낮은 블라드는 때때로 오히려 보행자에게 장애물이 되기도 한다. 높이가 낮아 횡단대기 인원이 많을 경우 보행자가 미처 블라드를 보지 못하고 걸려 넘어지는 경우가 종종 있다.

반면, 영국의 런던이나 프랑스 파리의 블라드는 비교적 날씬한 형태를 띠고 있다.
외국의 블라드 디자인

미국

미국 뉴욕

영국

영국 런던

프랑스

프랑스 파리
제3장
문제 유형별 원인분석 및 국내외 기준비교

1. 과도하게 높은 보도턱
2. 평탄하지 않은 보도
3. 유효폭이 좁은 보도
4. 무분별하게 설치된 보도시설물
5. 차량진출입으로 인한 보도 단절
6. 보도 위 불법 주차 및 주행
7. 안전하지 않는 횡단보도
8. 기타
1. 과도하게 높은 보도턱

우리나라 연석높이 기준이 외국에 비해 높음

우리나라의 보도턱 높이에 관한 기준을 보면 최근 수립된 장애인 관련 기준에서 12~15cm로 하향 조정되었으나 이것을 제외하면 대부분 25cm 이하로 되어있어 10~15cm로 규정하고 있는 외국 도시들에 비해 상대적으로 높은 것을 알 수 있다. 일부의 경우는 기준보다도 더욱 높게 보도턱을 설치하는 경우까지도 있다.

기준 자체가 높은 것뿐만 아니라 아래 표에서 보는 것처럼 각각의 기준마다 서로 다르게 규정되어 있는 것도 문제로 지적할 수 있다.

관행적으로 보도턱을 높임

관행적으로 보도턱을 가급적 높게 시공하려 한다는 점도 과도하게 높은 보도턱의 원인으로 작용하고 있다. 아스팔트 덧씌우기를 고려해서 높이기도 하고, 심리적인 안전감을 높이기 위해 차도면과의 단차를 크게 시공하기도 하며, 빗물로 인한 인접건물의 침수피해를 방지하기 위해 보도턱을 높이는 경우도 있는 것으로 보인다.

국내외 연석높이 관련 기준

<table>
<thead>
<tr>
<th>기준명</th>
<th>연석높이 기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td></td>
</tr>
</tbody>
</table>
| 도로의구조 : 시설기준에관한규칙 해설 및 지침 (2000) | • 보차도면 높이차 : 10~20cm • 연석높이 : 25cm 이하 
• 단, 횡단보도 접속부 12~20cm 간장 |
| 장애인·노인·임산부 등의 편의증진보장에 관한 법률 시행규칙(2005) | • 6~15cm |
| 보도 설치 및 관리지침(2004) | • 수직형 15~22.5cm (15cm 표준) |
| 서울시 장애인 편의시설 설치매뉴얼(2002) | • 보차도면 높이차 6~12cm |
| 일본  |              |
| 도로구조령(2003) | - |
| 보도의 일반적 구조에 관한 기준(2005) | • 15cm 표준(터널-25cm까지)
• 안전성과 배수 확보 시에는 5cm까지 가능 |
| 중점적구축시각에서의 이동원활화를 위한 도로구조에 관한 기준(2000) | • 15cm이상(간선도로:20cm,다리/터널:25cm) |
| 미국  |              |
| 뉴욕주 Highway Design Manual ch.18 Pedestrian Facility Design | • 10~15cm |
| 영국  |              |
| 대런던 Streetscape Guidance(2005) | • 12.5cm(버스정류장 14cm) |
국내외 연석높이 기준 비교

<table>
<thead>
<tr>
<th>나라</th>
<th>보도설치기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>25cm 이하</td>
</tr>
<tr>
<td>일본</td>
<td>15cm 이상</td>
</tr>
<tr>
<td>미국</td>
<td>10/15cm</td>
</tr>
<tr>
<td>영국</td>
<td>12.5cm</td>
</tr>
</tbody>
</table>

영국 대런던 /미국 뉴욕주 연석 규정 사례

영국 Great London (Streetscape, TFL)  
미국 뉴욕 (NYSDOTCADD, NYSDOT)

일본의 보도 구조: 플랫형 ▶ 세미 플랫형

플랫형

<table>
<thead>
<tr>
<th>보도</th>
<th>지도</th>
</tr>
</thead>
<tbody>
<tr>
<td>15cm 높이</td>
<td></td>
</tr>
</tbody>
</table>

세미 플랫형

<table>
<thead>
<tr>
<th>보도</th>
<th>지도</th>
</tr>
</thead>
<tbody>
<tr>
<td>5cm 높이</td>
<td></td>
</tr>
</tbody>
</table>

1m의 평면부 확보 가능

1m의 평면부 확보 가능
2. 평탄하지 않은 보도

경사도 기준이 지켜지지 않음

횡단경사 및 종단경사 등 보도의 평탄성을 유지하기 위한 기준이 있음에도 불구하고 이러한 기준이 지켜지지 않은 채 시공되어 기울기가 심하고 가파른 보도를 흔히 볼 수 있다.

도로의 구조시설 기준에 관한 규칙(2006)
도로안전시설 설치 및 관리지침 : 장애인 안전시설 설치 관련 요건(2000)
보도 설치 및 관리지침(2004)
도시관리계획 수립지침(2004)
보도포장설계 수립지침(1993)
장애인 응급 의료 및 서비스 시설 설치 및 관리 편의증진법 시행규칙(1997)
교통약자의 이동 편의 증진법 시행규칙(2006)
교육부의 교통 안전 편의증진법 시행규칙(2002)

보도턱이 높은 곳의 턱낮추기로 인한 경사

원래 보도폭이 좁고 보도턱이 높은 곳에서 턱낮추기를 할 경우 보도의 경사가 심해지는 경우가 많다. 표에서 보는 것처럼 보도턱이 높아지면 종단 경사 기준을 준수하기가 어려워진다.

<table>
<thead>
<tr>
<th>2cm 턱낮추기의 경사</th>
<th>연식 높이</th>
<th>보도폭</th>
</tr>
</thead>
<tbody>
<tr>
<td>15cm</td>
<td>8.67%</td>
<td>6.50%</td>
</tr>
<tr>
<td>20cm</td>
<td>12.00%</td>
<td>9.00%</td>
</tr>
<tr>
<td>25cm</td>
<td>15.33%</td>
<td>11.50%</td>
</tr>
</tbody>
</table>

국내 경사 기준 비교

<table>
<thead>
<tr>
<th>기 준 명</th>
<th>횡단경사</th>
<th>종단경사</th>
<th>턱낮추기 연식경사로</th>
<th>진행방향</th>
<th>연면경사</th>
</tr>
</thead>
<tbody>
<tr>
<td>도로</td>
<td>4.0% ≤ 하</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>도로안전시설 설치 및 관리지침 : 장애인 안전시설 설치 관련 요건(2000)</td>
<td>4.0% ≤ 하 (2.5%)</td>
<td>5.6% ≤ 하 (8.3%)</td>
<td>5.0% ≤ 하 (8.3%)</td>
<td>10.0% ≤ 하</td>
<td></td>
</tr>
<tr>
<td>보도 설치 및 관리지침(2004)</td>
<td>4.0% ≤ 하</td>
<td>5.6% ≤ 하</td>
<td>장애인 편의증진법, 도로 안전시설 장애인 편 창고</td>
<td></td>
<td></td>
</tr>
<tr>
<td>도시관리계획 수립지침(2004)</td>
<td>4.0% ≤ 하 (2.0% ≤ 하)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>보도포장설계 수립지침(1993)</td>
<td>4.0% 미만 (2.0% ≤ 하)</td>
<td>10.0% ≤ 하</td>
<td>8.0% 표준</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>장애인 - 노인 - 임산부 등의 편의증진보장에 관한 법률 시행규칙(1997)</td>
<td>5.6% ≤ 하 (8.3%)</td>
<td>8.3% ≤ 하</td>
<td>10.0% ≤ 하</td>
<td></td>
<td></td>
</tr>
<tr>
<td>교통약자의 이동편의증진법 시행규칙(2006)</td>
<td>4.0% ≤ 하</td>
<td>5.6% ≤ 하 (8.3%)</td>
<td>8.3% ≤ 하</td>
<td>10.0% ≤ 하</td>
<td></td>
</tr>
<tr>
<td>서울시 장애인 편의시설 설치 및 관리 법률(2002)</td>
<td>3.3% ≤ 하</td>
<td>5.6% ≤ 하</td>
<td>5.6% ≤ 하</td>
<td>5.6% ≤ 하</td>
<td></td>
</tr>
</tbody>
</table>

* ≪ ≫ 권장치, ( ) 완화치 / 1. 보행자 전용도로 일 때
인접 건축물의 바닥면이 높아 경사가 심해짐

보도에 인접한 건물을 지을 때 1층 바닥높이를 보도보다 높게 시공할 경우 보도가 심하게 기울어지는 경우가 많다. 아래 그림과 같은 관련기준이 있음에도 불구하고 규정을 어겨 시공된 경우가 많기 때문이다.

대형 신축건물 전면 도로 관리 규정

지하매설물 교체를 위한 굴착으로 평탄성 훼손

보도의 지하에 매설된 시설물을 교체하거나 수리하기 위해 굴착한 뒤 원상복구가 제대로 안되어 보도의 평탄성이 훼손된 경우도 흔하다.

보도포장 및 마감 기준 미흡

보도포장 및 마감에 대한 기준이 수치로 제공되지 않고, 구체적인 규정이 없어 평탄성을 확보하기 위한 유지관리가 어렵다.

국내 마감 기준 비교

<table>
<thead>
<tr>
<th>기준명</th>
<th>마감 기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>도로안전시설 설치 및 관리지침(장애인안전시설 설치, 2003)</td>
<td>보도블록이 표준</td>
</tr>
<tr>
<td>장애인노인임산부 등의 편의증진 보장에 관한 법률 시행규칙(2005)</td>
<td>이음새가 벌어지지 않게</td>
</tr>
<tr>
<td>교통약자의 이동 편의증진법 시행규칙(2006)</td>
<td>표면은 평탄하게</td>
</tr>
<tr>
<td>보도 설치 및 관리지침(2004)</td>
<td></td>
</tr>
<tr>
<td>서울시 장애인 편의시설 설치 매뉴얼(2002)</td>
<td>삼통</td>
</tr>
<tr>
<td></td>
<td>보도면 높이차 0.5cm 이하</td>
</tr>
</tbody>
</table>
영국 대런던의 유틸리티 커버 시공

- 보도에 유틸리티 커버를 설치하려고 할 때, 눈에 잘 띄지 않는 디자인으로 하여야 함.
- 포장재가 다른 접합부와 같이 자연스러운 틈이 생기는 곳에 설치하는 것이 바람직함.
- 이러한 유틸리티 커버 프레임은 아스팔트와 같은 고정포장재가 시공된 곳에 설치하지 않음.
- 보안지역에서는 유틸리티 커버 프레임을 표시해야 함.

자료 : 영국 대런던의 「가로경관 디자인(2005)」
3. 유효폭이 좁은 보도

각기 다른 규정 / 기준이 잘 지켜지지 않음

최소보도폭에 대한 기준이 1.2m, 1.5m, 2.0m 등 각기 다르게 규정되어 있으며, 최소 기준이라 할 수 있는 1.2m의 유효폭이 확보되지 않는 경우도 종종 발견된다.

최소 보도폭에 대한 국내 기준

<table>
<thead>
<tr>
<th>구분</th>
<th>법규 및 기준</th>
<th>유효폭(시설당 폭 추가)</th>
</tr>
</thead>
<tbody>
<tr>
<td>도로</td>
<td>도로의구조시설기준에관한규칙(2006)</td>
<td>간선도로 : 3.00m 이상, 집산도로 : 2.25m 이상, 국지도로 : 1.50m 이상</td>
</tr>
<tr>
<td></td>
<td>도로관리계획 수립지침(2004)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>도로설계그림(2000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>보도포장설계공급지침(1993)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>도로안전시설 설치 및 관리지침(2004)</td>
<td>1.5m 이상</td>
</tr>
<tr>
<td></td>
<td>보도 설치 및 관리지침(2004)</td>
<td>2.0m 이상 (불가피시 1.5m)</td>
</tr>
<tr>
<td>장애인</td>
<td>장애인노인임산부 등의 편의증진보장에 관한 법률 시행규칙(2005)</td>
<td>1.2m 이상</td>
</tr>
<tr>
<td></td>
<td>교통약자와의 이동편의증진법 법률 시행규칙(2006)</td>
<td>2.0m 이상 (불가능시 1.2cm)</td>
</tr>
<tr>
<td></td>
<td>서울시 장애인 편의시설 설치예수법(2002)</td>
<td>2.0m 이상</td>
</tr>
</tbody>
</table>

보도 위 시설물 설치에 따른 추가폭 확보 규정

보도 위에 도로시설물이 설치되어 보행자의 통행을 방해하고 있으나 이러한 시설물을 설치할 경우 추가폭 확보에 관한 규정이 미비한 실정이다. 도로의 구조시설 기준에 관한 규칙 제16조 제4항에서 보도 위 시설물 설치에 대한 추가폭을 규정하고 있으나 가로수와 기타시설만으로 양분하여 제시되고 있다. 또한 불가피할 경우 적용을 배제하는 규정을 두고 있어 실제 시행규정으로 부적합하다.

이와 관련하여 건설교통부의 「도시관리계획 수립지침」에서는 추가폭과 관련하여 노상시설에 대한 장애폭을 제시하고 있다.

추가폭에 대한 규정

<table>
<thead>
<tr>
<th>[도로의 구조시설 기준에 관한 규칙] 제16조 제4항</th>
</tr>
</thead>
<tbody>
<tr>
<td>보도에 노상시설을 설치하는 경우 보도의 폭은 제3항의 규정에 의하여 결정한 보도의 폭에 다음 각호의 폭을 더한 값으로 한다.</td>
</tr>
<tr>
<td>· 노상시설이 가로수인 경우 : +1.0m</td>
</tr>
<tr>
<td>· 그 외 기타시설 : +0.5m</td>
</tr>
</tbody>
</table>

<예외 규정> 다만 도시관리계획이나 주변 지정물 등으로 인하여 부득이하다고 인정되는 경우에는 그러하지 아니함.
4. 무분별하게 설치된 보도시설물

보도상 도로시설물의 배치에 관한 기준 부재

도시관리계획 수립지침에서 보도상 설치되는 도로시설물의 장애폭을 다뤄 추가로 환산되어야 할 폭을 제시하고 있으나, 그 설치 위치나 배치에 대해서는 다루고 있지 않다.

이러한 시설물을 일렬로 배치하면 가장 폭을 넓게 차지하는 시설물에 대한 추가폭을 가산하는 것이 보다 합리적이며, 그러기 위해서는 도로시설물 설치구역과 보행자통행구역을 구분할 필요성이 있다.

영국, 미국, 프랑스 등의 기준에서는 보도를 보행자의 통행구역과 도로시설물 설치구역으로 구분하여 각각의 폭에 대한 기준을 제시하고 있다.

<table>
<thead>
<tr>
<th>노상시설에 대한 장애폭</th>
<th>장애정도(m)</th>
<th>노상시설</th>
<th>장애정도(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>가로등</td>
<td>0.8~1.0</td>
<td>휴지통</td>
<td>0.9</td>
</tr>
<tr>
<td>교통신호등 지주</td>
<td>0.9~1.2</td>
<td>지하철 환기구</td>
<td>0.8</td>
</tr>
<tr>
<td>교통안전표지판</td>
<td>0.6~1.8</td>
<td>가로수</td>
<td>0.9~1.2</td>
</tr>
<tr>
<td>우체통</td>
<td>1.0~1.1</td>
<td>가로수보호지주</td>
<td>1.5</td>
</tr>
<tr>
<td>공중전화박스</td>
<td>1.2</td>
<td>신문가판대</td>
<td>1.2~2.0</td>
</tr>
</tbody>
</table>


미국의 보도 영역 구분

<table>
<thead>
<tr>
<th>영역구분</th>
<th>최소폭</th>
</tr>
</thead>
<tbody>
<tr>
<td>연석영역</td>
<td>152mm</td>
</tr>
<tr>
<td>가로수/도로시설물영역</td>
<td>610mm(식수시 1,22m)</td>
</tr>
<tr>
<td>보행자영역</td>
<td>1,525m</td>
</tr>
<tr>
<td>건물앞영역</td>
<td>0.76m</td>
</tr>
<tr>
<td>전체보도폭</td>
<td>3,10m</td>
</tr>
</tbody>
</table>

자료: 미국 연방도로국의 『접근성을 고려한 보도와 산책로 디자인』 (1999)
영국의 보도 영역 구분 및 시설물 배치규정

도로시설물 영역 <0.5~1.0m>에 설치
: 빌라드, 가로등, 신호등, 벤치, 휴지통, 캔틸레버 형식 버스정류장

도로시설물 영역 <1.0~1.6m>에 설치
: 공중전화부스, 자전거 주차시설(연식선과 45°)

도로시설물 영역 <1.6~2.0m>에 설치
: 자전거 주차시설(연식선과 90°), 패널형 버스정류장 부스

자료 : 영국 대런던의 「가로경관 디자인(2005)」
5. 차량진출입으로 인한 보도 단절

차량진출입부의 보도평탄부 확보에 대한 규정 미비

차량진출입부에 대한 규정은 일반적인 원칙만을 언급하고 있을 뿐, 턱낮추기 시공 폭, 깊이 또는 보도 평탄부 폭 등 구체적인 기준이 제시되지 않고 있다.

<table>
<thead>
<tr>
<th>교통약자의 이동편의증진법 시행규칙(2006) 별표 : 이동편의시설의 구조재질 등에 관한 세부기준</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>처방진출입부</strong></td>
</tr>
<tr>
<td>- 보도 등의 높이를 유지하고 차도의 경계부분은 턱낮추기를 하여야 함.</td>
</tr>
<tr>
<td>- 보도 등과 차도가 교행하는 구간의 바닥마감재는 색상 및 질감 등을 달리하여야 함.</td>
</tr>
</tbody>
</table>

| **턱낮추기** |
| - 횡단보도와 접속하는 보도의 경계구간에는 턱낮추기를 하거나 연석경사로 또는 부분경사로를 설치하여야 함. 다만, 주택가·학교 주변의 면도 2차로 이하인 도로의 경우에는 횡단보도에 접속하는 보도와 차도의 높이를 같게 할 수 있음. |
| - 보도의 경계구간 높이차는 2cm이하가 되도록 설치하되, 연석을 낮추어 시공해서는 아니됨. |
| - 연석경사로의 유효폭은 0.9m이상으로 하고 기울기는 1/12이하로 하며, 경사로 영면의 기울기는 1/10이하로 함 |
| - 보도 전체를 턱낮추기를 할 수 없거나, 유효폭이 2cm이하인 보도와 연결된 횡단보도에서는 유효폭이 0.9m이상으로 설치할 수 있음 |

차도 위주의 이면도로 진입부 시공

최근 수립된 「보도 설치 및 관리지침(2004)」에서는 이면도로의 진입부에 험프형 횡단보도를 설치하여 보도의 높이를 유지하고, 보도의 평탄성을 확보하도록 규정하고 있다. 그러나 이전에 조성된 대부분의 이면도로를 보면 차량중심으로 시공되어 차도의 높이를 유지하고 보도의 턱을 낮추는 방식으로 조성되어 있다.

이면도로 서울시 사례
미국 도로연방국의 차량진출입부 전장 디자인

보도에 평탄한 부분을 가지는 넓은 보도의 차량진출입부
식수대가 설치된 보도에서 평탄부 전후에 경사를 둔 차량진출입부
방향을 꺾어서 평탄부를 가지는 차량진출입부

<table>
<thead>
<tr>
<th>디자인 상세</th>
<th>디자인 상세</th>
<th>디자인 상세</th>
</tr>
</thead>
<tbody>
<tr>
<td>평탄부 기울기 : 2%</td>
<td>평탄부 기울기 : 2%</td>
<td>평탄부 기울기 : 2%</td>
</tr>
<tr>
<td>높이변화 : 없음</td>
<td>높이변화 : 없음</td>
<td>높이변화 : 없음</td>
</tr>
<tr>
<td>평탄부 폭 : 최소 0.915m</td>
<td>평탄부 폭 : 최소 0.915m</td>
<td>평탄부 폭 : 최소 0.915m</td>
</tr>
<tr>
<td>옆면 경사 : 최대 10%</td>
<td>옆면 경사 : 최대 10%</td>
<td>옆면 경사 : 최대 10%</td>
</tr>
</tbody>
</table>

방향을 꺾어서 평탄부를 가지는 차량진출입부

보행통로에 경사를 두는 경우 반드시 플레어를 설치함.
대지에서 보행통로 방향으로 상향경사를 두고, 보행통로에서 차도방향으로 하향경사를 둔.
기존의 폭이 좁은 보도에 보행 통로의 높이를 변화시키지 않고 삐지지 않음을 때 이용될 수 있음

자료 : 미국 연방도로국의 「접근성에 고려한 보도와 산책로 디자인 II (2003)」
이면도로 국외사례

영국 런던 프랑스 파리

영국 대런던의 이면도로 진입부

자료: 영국 대런던의 가로경관 디자인(2005)
6. 보도 위 불법 주차 및 주행

보도 위 주차금지 규정이 지켜지지 않음

도로교통법 제32조에서 보도 위 주차를 금하고 있음에도 불구하고 보도 위에 불법으로 주정차하는 차량이 많다. 보도 위나 연석높이가 낮거나 연석낮춘 곳의 보도에 바퀴 한쪽을 걸쳐 주차된 차를 종종 발견할 수 있다.

보도 주차 금지규정 : 《도로교통법》제32조

<table>
<thead>
<tr>
<th>제32조 (정차 및 주차의 금지)</th>
</tr>
</thead>
<tbody>
<tr>
<td>모든 차의 운전자는 다음 각 호의 어느 하나에 해당하는 곳에서는 차를 정차 또는 주차시켜서는 아니 된다 다만 이 법이나 이 법에 의한 명령 또는 경찰공무원의 지시에 의한 경우외 위험 방지를 위하여 일시정지하는 경우에는 그러하지 아니하다.</td>
</tr>
<tr>
<td>1. 교차로 · 횡단보도 · 건널목이나 보도와 차도가 구분된 도로의 보도 · 건물 전면 주차차량의 보도 주행</td>
</tr>
<tr>
<td>(「주차장법」에 의하여 차도와 보도에 걸쳐서 설치된 노상주차장을 제외한다)</td>
</tr>
</tbody>
</table>

건물 전면 주차차량의 보도 주행

건물 전면부에 설치된 주차장에 주차하기 위해서 보도를 통과하거나 주차장과 가까운 탁낮추기여부로 통행하기 위해 보도를 주행하는 차량을 종종 발견할 수 있다.

보도 주차 금지 법규 국외사례

<table>
<thead>
<tr>
<th>영국 대런던</th>
<th>《도로교통법(Highway Code)》 제123항</th>
</tr>
</thead>
<tbody>
<tr>
<td>부지로의 접근을 위한 합법적인 통행을 제외한 보도를 주행하거나 통과하는 것을 금함</td>
<td></td>
</tr>
<tr>
<td>대런던 : 도로교통법에서 보도주차를 금하고 있으나 주차난을 해결하기 위해 지역정부가 허용 하기도 하지만 대런던은 특별히 주차를 허용한다는 표지판이 없는 모든 보도에서의 주차를 불법으로 간주함</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>미국 뉴욕시</th>
</tr>
</thead>
<tbody>
<tr>
<td>뉴욕시 주차위반법(Violating Code Parking &amp; Vehicle) 제51조</td>
</tr>
<tr>
<td>보도 위 주정차 시 벌금 $115</td>
</tr>
</tbody>
</table>
7. 안전하지 않는 횡단보도

안전성 등 횡단보도 설치 상세기준 미비

횡단거리가 긴 횡단보도에서의 안전성(보행성) 설치기준이 미비하다. 「교통약자의 이동권의증진법 시행규칙 별표 1」에서 보행성식 횡단보도에 대하여 규정하는 있으나 설치도로의 폭에 대한 규정이 없다.

횡단보도 대기공간에 관한 규정 미비

대부분의 횡단보도에서 턱낮추기를 실시하기 때문에 경사가 발생하게 된다. 경사가 심한 반면에 평탄한 대기공간이 마련되지 않기 때문에 횡단신호를 기다리는 활력마이나 손수레 이용자들은 불편을 겪고, 안전을 위협받기도 한다.

횡단보도 설치 관련 국내기준

<table>
<thead>
<tr>
<th>법규 및 기준</th>
<th>도로의구조 · 시설 기준에 관한 규정 (2000)</th>
<th>도시계획시설의결정 · 구조에 관한 규정 (2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>횡단보도 설치 기준</td>
<td></td>
<td></td>
</tr>
<tr>
<td>폭</td>
<td>· 유효 보도폭의 2배</td>
<td>· 횡단보도의 최소 유효폭 1.5m 이상 (교통량에 따라 +0.75m)</td>
</tr>
<tr>
<td></td>
<td>· 최소치 도로폭 일 때 4m (6~8m 2m)</td>
<td></td>
</tr>
<tr>
<td>횡단보도 설치</td>
<td>· 차로 횡단거리가 가능한 한 짧게</td>
<td></td>
</tr>
<tr>
<td>위치</td>
<td>· 교차면적이 좁게</td>
<td></td>
</tr>
<tr>
<td>위치선정시 고려사항</td>
<td>· 교차로의 형태</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· 교차도로의 폭</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· 보도 설치 유무 및 설치목</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· 우각 횡단부 유무</td>
<td></td>
</tr>
<tr>
<td>기타</td>
<td>횡단보도 부근의 보도에는 횡단 대기 보행자들의 대기공간이 있어야 함</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· 도로폭 따라 교통량, 안전지대 설치</td>
<td></td>
</tr>
<tr>
<td></td>
<td>· · 점자표시 · 야광표시를 하여 보행자의 안전을 기할 것</td>
<td></td>
</tr>
</tbody>
</table>

보험성식 횡단보도 설치기준 : 교통약자의 이동권의증진법 시행규칙 제9조 제1항 별표

- 보행우선구역 안에서 도로의 용지가 허용되는 경우에는 도로의 중앙에 횡단을 위한 일시적인 대기 장소(이하 "보험성"이라 한다)를 두고 횡단보도를 설치하여야 한다.
- 보행성은 도로의 규모에 따라 직선형태 또는 굴절형태의 횡단보도의 중앙에 선택적으로 설치할 수 있다.
- 보행성의 최소폭은 1.5미터로 하여야 한다.
- 보행성의 전후에는 안전지대 노면표시 및 자동차 진입역제용 말뚝 등의 공작물을 설치하여 자동차 외 보행자의 충돌사고를 방지하여야 한다.
육교지하도 설치지역에 횡단보도 설치 제한

『도로교통법 시행규칙』 제11조 제4항에서는 입체횡단시설이나 다른 횡단보도와 200미터 이내의 거리에 있는 곳에 횡단보도를 설치하지 못하게 하고 있다.

<table>
<thead>
<tr>
<th>횡단보도 설치기준 : 『도로교통법 시행규칙』 제11조 제4항</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. 횡단보도는 육교・지하도 및 다른 횡단보도로부터 200미터 이내에는 설치하지 아니할 것. 다만, 법 제12조에 따라 어린이 보호구역으로 지정된 구간인 경우 또는 보행자의 안전이나 통행을 위하여 특히 필요하다고 인정되는 경우에는 그러하지 아니한다.</td>
</tr>
</tbody>
</table>

횡단보도 주변 주정차 금지조항 미준수

교차로, 횡단보도, 건널목의 가장자리 등에서 일정거리 내에 있는 곳에서의 차량 주정차를 금하고 있지만, 특별한 표시가 없어 운전자가나 보행자가 그 거리를 가늠하지 못하고 주정차하는 경우가 많다.

<table>
<thead>
<tr>
<th>횡단보도 주변 주정차 금지구역 : 『도로교통법』 제32조</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 교차로・횡단보도・건널목이나 보도와 차도가 구분된 도로의 보도(『주차장법』에 의하여 차로와 보도에 걸쳐서 설치된 노상주차장을 제외한다)</td>
</tr>
<tr>
<td>2. 교차로의 가장자리 또는 도로의 모퉁이로부터 5m 이내의 곳</td>
</tr>
<tr>
<td>3. 안전지대가 설치된 도로에서는 그 안전지대의 사방으로부터 각각 10m 이내의 곳</td>
</tr>
<tr>
<td>4. 버스여객자동차의 정류를 표시하는 기둥이나 판 또는 선이 설치된 곳으로부터 10m 이내의 곳. 다만, 버스여객자동차의 운전자가 그 버스여객자동차의 운행시간 중에 운행노선에 따르는 정류장에서 승객을 태우거나 내리기 위하여 차를 정차 또는 주차시키는 때에는 그러하지 아니하다.</td>
</tr>
<tr>
<td>5. 건널목의 가장자리 또는 횡단보도로부터 10m 이내의 곳</td>
</tr>
<tr>
<td>6. 지방경찰란장이 도로에서의 위험을 방지하고 교통의 안전과 원활한 소통을 확보하기 위하여 필요하다고 인정하여 지정한 곳</td>
</tr>
</tbody>
</table>

영국의 횡단보도 주변 주차금지 표시

영국에서는 보행자나 운전자가 횡단보도 주변 차량의 주정차를 금지하는 구역을 알아보기 쉽게 하기 위해 지그재그선을 사용함

영국의 도로교통법

제167조 횡단보도나 지그재그선으로 표시된 구역에서 주차하는 것을 금한다. 또한 보행자의 횡단을 기다리는 차량을 추월해서는 안된다.
폭 넓은 턱낮추기 부분으로 차량진입

턱낮추기의 폭에 대한 특별한 규정이 없어 폭을 넓게 하여 턱 낮추기를 한 지점을 이용하여 보도에 진입하는 차량을 종종 볼 수 있다. 이를 막기 위해 블라드를 설치하지만, 블라드가 오히려 보행자의 통행을 방해하는 장애물이 되는 경우가 많다.

보행자 신호시간 부족

보행자 신호시간에 관한 기준이 지켜지지 않아 보행에 불편을 초래하는 경우가 많고 특히 노약자와 장애인 등 교통약자에게 어려움을 초래한다.

미국 연방도로국 턱낮추기 권장디자인

<table>
<thead>
<tr>
<th>플레어 돌 가진 수직연석 경사로와 평탄부 확보</th>
<th>식수대를 가진 수직연석 경사로와 평탄부 확보</th>
<th>넓은 턱낮추기를 갖는 2개의 평행연석경사로</th>
<th>모서리 확장부에 연석경사로 설치, 평탄부 확보</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1±1.2% 경사로경사</td>
<td>7.1% 경사로경사</td>
<td>7.1±1.2% 경사로경사</td>
<td></td>
</tr>
<tr>
<td>최소 1.22m 경사로폭</td>
<td>최소 1.22m 경사로폭</td>
<td>최소 1.22m 경사로폭</td>
<td></td>
</tr>
<tr>
<td>평면으로 이어짐 수직높이 변화 0cm</td>
<td>평면으로 이어짐 수직높이 변화 0cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>최소 1.22m 평탄부폭</td>
<td>최소 1.22m 평탄부폭</td>
<td>최소 1.22m 평탄부폭</td>
<td></td>
</tr>
<tr>
<td>최대 2% 횡단경사</td>
<td>최대 2% 횡단경사</td>
<td>최대 2% 횡단경사</td>
<td></td>
</tr>
<tr>
<td>최대 10% 플레어경사</td>
<td>최대 10% 플레어경사</td>
<td>최대 10% 플레어경사</td>
<td></td>
</tr>
<tr>
<td>2% 횡단경사 2% 횡단경사</td>
<td>2% 횡단경사 2% 횡단경사</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

자료: 미국 연방도로국의 '접근성을 고려한 보도와 산책로 디자인 II (2003)'
8. 기타

점자블록 설치구간에 관한 기준 미흡

점자블록은 시각장애인들과의 약속과 같은 것인데 점자블록 설치위치를 정하는 구체적인 기준이 없어 보도의 중앙, 유효보도폭의 중앙 등 장소마다 서로 다르게 설치되어 있다.

기준에 부합하지 않은 점자블록 시공

통행방향이 연식과 직각이 아닌 경우 선형블록을 통행방향과 평행하게 설치하도록 규정하고 있으나 보도와 직각방향으로 설치된 것들이 종종 발견된다.

<table>
<thead>
<tr>
<th>횡단방향과 연식이 직각이 아닌 경우의 점자블록 설치</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="https://example.com/image.png" alt="диаграмма" /></td>
</tr>
<tr>
<td>자료 : 도로안전시설 설치 및 관리지침(장애인편)</td>
</tr>
</tbody>
</table>

기준에 부합하지 않은 볼라드 설치

2006년 제정된 교통약자의 이동편의증진법 시행규칙 별표 2에서 차량진입억제용 볼라드의 기준을 마련하고 있으나 아직까지 기준을 따르는 규격의 볼라드를 주변에서 발견하기는 어렵다.

<table>
<thead>
<tr>
<th>차량진입억제용 볼라드 설치</th>
</tr>
</thead>
<tbody>
<tr>
<td>밝은 색의 반사도료를 사용하여 쉽게 식별할 수 있도록 설치함</td>
</tr>
<tr>
<td>높이 : 80~100cm 내외</td>
</tr>
<tr>
<td>지름 : 10~20cm 내외</td>
</tr>
<tr>
<td>설치간격 : 1.5m 내외</td>
</tr>
<tr>
<td>자동차 진입억제용 밑목의 0.3m면에 점형블록 설치</td>
</tr>
<tr>
<td>자료 : 교통약자의 이동편의증진법 시행규칙</td>
</tr>
</tbody>
</table>

60 / 보도설치기준 국제비교 연구
세계 대도시 보도설치기준 비교

1. 서울
2. 도쿄
3. 뉴욕
4. 런던
5. 기타도시 (파리, 베를린)
6. 비교 및 종합
1. 서울

가. 한국의 보도 관련 법규 및 기준 개관

도로 관련 법규 및 기준

도로 관리에 대한 일반적인 법규는 일제 때에도 있었으나 일제시대 법령 폐기조치에 따라 폐지되었고, 대한민국 정부 최초의 도로법은 1961년 12월 27일 제정 공포되었다.

보도가 포함된 도로구조의 실질적인 기술기준인 「도로구조령」은 1965년 대통령령으로 최초로 제정되었다. 이후 「도로구조령」은 자동차시대를 대비하기 위해 1979년에 전면 개정된다.

이후 도로구조령은 교통량의 급증, 자동차의 대형화 및 성능향상 등에 맞는 도로정비가 요구됨에 따라 1990년에 「도로의 구조시설기준에 관한 규정」으로 법명이 바뀌었고, 내용도 일부 개정된다.


<table>
<thead>
<tr>
<th>법</th>
<th>명령・규칙 및 지침</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>「도로법」(1961~현재)</td>
</tr>
<tr>
<td>국토의 이용 및 계획에 관한 법률 (2002~현재)</td>
<td>「도시계획시설의 결정・구조 및 설치기준에 관한 규칙」(2002~현재)</td>
</tr>
<tr>
<td></td>
<td>「도시관리계획수립지침」(2002~현재)</td>
</tr>
</tbody>
</table>
최초의 도로구조령에서는 보도폭과 보도구조, 건축한계, 횡단구배에 대해서만 규정하고 있으나, 1979년 개정에서는 교통안전시설 설치에 대한 규정과 신체장애인의 통행권의를 고려해야 한다는 규정이 새로 신설되었다.

1999년 건설교통부령으로 새로운 제정된 '도로의 구조시설기준에 관한 규칙'에서는 연석, 방호울타리로 보차분리, 연석높이, 횡단보도에 접한 구간의 편의시설 설치에 관한 내용이 새로 신설되었고, 2%의 표준을 제시했던 횡단구배는 4%이하의 상한을 규정하고 있다.


보도에 대한 설치기준에는 '도로법'이외에 2002년 폐지된 '도시계획법'을 근간으로 하는 '도시계획시설기준에 관한 규칙' (2002년 폐지)과 도시계획법과 국토관리법의 편람을 폐지하고 통합·신설된 '도시계획시설의 결정·규정 및 설치기준에 관한 규칙'을 근거로 하는 '도시계획시설의 결정·규정 및 설치기준에 관한 규칙'이 있다. '도시계획시설기준에 관한 규칙'의 후속법령인 '도시계획시설의 결정·규정 및 설치기준에 관한 규칙' 역시 횡단보도 설치에 관한 기준을 다루고 있다.

장애인 관련 법규 및 기준

1990년대부터 국내외적으로 장애인의 이동권에 대한 관심이 고조되면서 장애인의 통행을 배려한 기준들이 장애인 관련법에서 제정되기 시작한다.

장애인 복지법 제33조를 근거로 1994년에 제정된 '장애인편의시설 및 설비의 설치기준에 관한 규칙'에서는 보도폭, 보도의 경사, 가로수 가지치기, 탁나무가, 절지블록 설치, 보도 바닥마감처리 등에 대해 자세하게 규정하고 있다. 이 규칙은 '장애인노인·임산부의 편의증진보장에 관한 법률'과 그에 대한 시행규칙이 1997년에 제정됨에 따라 1998년 폐지되었다.
건설교통부는 2000년에 「장애인노인임산부 등의 편의증진 보장에 관한 법률」에 의거하여 설치되는 장애인 안전시설 중 도로법상 도로에 설치되는 시설에 대한 설치 및 유지관리 지침서인 「도로안전시설 설치 및 관리지침(장애인 안전시설 편)」을 제정·발간하였다.

2004년에는 그동안 자동차 소통에 중점을 두었던 도로정책에서 탈피하여 보행자 및 자전거 이용자를 배려한 보도 설치 및 관리지침을 발간한다. 「장애인노인임산부의 편의증진보장에 관한 법률」 및 동법 시행령, 시행규칙 중 도로 및 교통관련 편의시설의 구조에 대한 내용은 「교통약자의 이동편의 증진법」이 2005년 제정되고, 2006년 동법 시행규칙이 제정됨에 따라 「교통약자의 이동편의 증진법 시행규칙」에 이관되었다.

이 때 보도유효폭에 대한 규정은 1.5m에서 2.0m로 더욱 강화되었지만, 연석높이에 대한 기준은 6~12cm에서 25cm이하로 도로법규의 기준을 따르고 있다.

<table>
<thead>
<tr>
<th>법</th>
<th>명령·규칙 및 지침</th>
</tr>
</thead>
<tbody>
<tr>
<td>장애인 복지법</td>
<td>장애인편의시설 및 설비의 설치기준에 관한 규칙(1994~98)</td>
</tr>
<tr>
<td>장애인노인임산부의 편의증진 보장에 관한 법률(1997~현재)</td>
<td>장애인노인임산부의 편의증진 보장에 관한 법률 시행규칙 (1998~현재)</td>
</tr>
<tr>
<td>교통약자의 이동편의 증진법 (2005~현재)</td>
<td>교통약자의 이동편의 증진법 시행규칙 (2006~현재)</td>
</tr>
</tbody>
</table>

국내의 보도 설치 및 관리기준의 내용은 하나로 일치되지 않고, 근거법이나 관련 주체에 따라 서로 다른 차이를 보이고 있다.
나. 서울시의 보도 관련 기준

서울시 도로국은 체계화 되지 못했던 도로시설물의 유지관리에 대한 내용들을 체계적으로 정리하여 1992년에 「도로시설물 유지관리지침 및 규정」이라는 지침서를 편찬하였고, 이듬해인 1993년에는 보도에 관한 유지·관리 내용을 선별하여 「보도포장 설계시공편람」이라는 편람을 발간하여 실무업무에 활용하도록 하였다.

1997년 「서울특별시 보행권 확보의 보행환경 개선에 관한 기본조례」가 제정되고, 그에 따라 서울시는 5년마다 보행환경기본계획 수립을 결정하고, 제1차 걸고 싶은 서울 만들기 위한 서울시 보행환경 기본계획이 1998년 최초로 수립된다.

한편 1998~1999년 서울시 각 자치구들은 “자치구 보도포장관리규칙”을 제정·공포하면서 보도에 대한 설치 및 관리의 업무를 각 자치구에서 담당하게 된다.


서울시는 2002년에 발간한 「장애인 편의시설 설치 매뉴얼」 제2편 도로에서 보도설계 시 장애인 및 이동약자를 고려하는 설계기준을 별도로 규정하고 있다. 또한 2006년에는 장애인복지과에서 장애인편의시설 설치관련 법령 및 설치기준 요약집을 편찬한 바 있다.

또한 「2020 서울시 도시기본계획」에서도 인간중심적인 교통환경 개선, 도시 내 배리어프리 환경조성 등을 주요 정책으로 제정하는 등, 보도 설계 및 관리 시 장애인의 보행권 보장이 더욱 강화되고 있는 추세이다.

<table>
<thead>
<tr>
<th>관련기관</th>
<th>지침 및 매뉴얼</th>
</tr>
</thead>
<tbody>
<tr>
<td>서울시 도로국</td>
<td>- 도로시설물 유지관리지침 및 규정(1992)</td>
</tr>
<tr>
<td></td>
<td>- 보도포장 설계시공편람(1993)</td>
</tr>
<tr>
<td>서울시 복지건강국</td>
<td>- 장애인 편의시설 설치 매뉴얼(2002)</td>
</tr>
<tr>
<td></td>
<td>- 장애인 편의시설 설치관련 법령 및 설치기준 요약집(2006)</td>
</tr>
</tbody>
</table>
장애인 편의시설 설치 매뉴얼(2002)

서울시 복지건강국에서 2002년에 발간한 것으로 건축물, 도로, 공원, 공공교통시설 등의 네 편으로 구성되며, 도로편에서 보도, 횡단보도, 입체횡단시설, 점자블록, 승하차장을 다루고 있다.

보도 디자인의 원칙으로 보차도 분리와 장애인, 유모차, 짐수레 등이 자유롭게 이용할 수 있도록 연속성 확보를 강조하고 있다.

또한 경계석, 녹지대, 가드레일 등을 설치하여 보차도를 분리하고, 간판, 전봇대, 가로등, 가로수 등 보행장애물로부터 독립된 보도의 유효폭을 확보하는 것을 보도 설치의 목표로 하도록 강조하고 있다.

### 장애인 편의시설 설치매뉴얼의 보도 설치 관련 주요기준

<table>
<thead>
<tr>
<th>항목</th>
<th>기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>일반</td>
<td>보도 유효폭 2.0미터 이상(1.2m) 1.2미터일 때 교행구역 1.5m×1.5m<del>1.5m</del>평지50m/경사지30m</td>
</tr>
<tr>
<td>종단경사</td>
<td>5.6%이하</td>
</tr>
<tr>
<td>횡단경사</td>
<td>3.3%이하</td>
</tr>
<tr>
<td>보차도 경계단차 6~12cm</td>
<td></td>
</tr>
<tr>
<td>건축한계</td>
<td>2.1m</td>
</tr>
<tr>
<td>횡단 보도 높낮이</td>
<td>전면 낮추기(보도폭 2.0m 이상) 2.0cm이하</td>
</tr>
<tr>
<td>진행방향 경사</td>
<td>5.6%이하(모든 방향)</td>
</tr>
<tr>
<td>아래평탄부</td>
<td>1.5m(보도폭이 넓을 때)</td>
</tr>
<tr>
<td>부분 경사로 : 보도폭 2.0m 미만</td>
<td>경사로 폭 0.9미터</td>
</tr>
<tr>
<td>진행방향 경사</td>
<td>5.6%이하</td>
</tr>
<tr>
<td>차량전 출입부</td>
<td>구분 넓은 보도 좁은 보도</td>
</tr>
<tr>
<td>평탄부 유효폭</td>
<td>2.0m 1.0m</td>
</tr>
<tr>
<td>진행방향 경사</td>
<td>15.0% 10.0%</td>
</tr>
<tr>
<td>보도의 마감</td>
<td>평탄하고 미끄럽지 않게 포장재는 음직이지 않게 0.5cm이상의 틱이 생기지 않게 이음새의 틈이 벌어지지 않게 틈의 면이 평탄하게 맨홀 배수구 덮개 등이 보도를 점유해서는 안됨</td>
</tr>
<tr>
<td>배수구 덮개</td>
<td>틈 간격 : 1.0cm이하</td>
</tr>
</tbody>
</table>
장애인 편의시설 설치 매뉴얼 (2002)

 횡단보도에서 전체턱낮추기

 교차부에서 전체턱낮추기

 차량진출입부

 보도전체를 낮춘 경우
장애인 편의시설 설치 매뉴얼(2002)

보행안전지대(통행로) 양쪽 설치
자전거도로+경고블록+통행로
가로수+경고블록+통행로

유효폭 경계에 유도블록 설치

횡단보도중앙
안전지대 설치

보도 전체 턱낮추기를 할 수 없거나 불리한 유효폭 200cm보다 좁은 보도와 연결된 횡단보도에서는 유효폭 90cm이상의 부분경사로를 설치한다.
안전지대의 바닥높이는 도로와 동일하거나 도로보다 2cm이상의 턱이 생기지 않도록 한다.

보도 전체를 낮춘 경우

이면도로
전입부

좁은 보도
넓은 보도
2. 도쿄

가. 일본의 보도 관련 법규 및 기준

일본의 보도 설치에 관한 법규와 기준은 19세기 후반부터 시작된다. 보도와 차도의 구분을 위해 동경의 주요도로의 7-8m의 폭을 차량통행용으로 하고 그 좌우에 보도를 정비한다는 내용의 「도로개조명령」이 1871년 제정되었다.

그러나 정식으로 「도로법」이 공포·시행된 것은 1919년으로 이 때 도로구조의 기준이 되는 「도로구조령」과 「가로구조령」이 내무성령으로 공포된다. 1952년에는 「도로법」이 전면적으로 개정된다. 도로의 구조에 관한 기술적 기준을 정함으로 정해 잠시 기준안 형태로 운용한 「도로구조령」이 1958년에 제정되는데 이는 앞서 시행된 「도로구조령」과 「가로구조령」을 일원화 한 것으로 시가부 도로에 보도를 설치하도록 규정하였다.

일본은 차량운행이 증가하면서 교통사고 발생이 많아짐에 따라 교통사고 다발지역 도로의 교통안전 확보를 위해 「교통안전시설등 정비사업에 관한 긴급조치법」을 1966년에 제정하게 된다.

이 법은 육교설치, 보도, 도로표식, 방호책, 가로등, 구획선 등에 관한 사업, 「교통안전시설등 정비사업 5개년 계획」의 근거법으로 이법을 기초하여 현재 「제8차 교통안전시설등 정비사업 5개년 계획」이 시행되고 있다.

도로 교통의 안전을 더욱 확보하기 위하여 교통안전대책을 종합적·계획적으로 추진하기 위하여 1970년에는 「교통안전대책기본법」이 제정되었다.

<table>
<thead>
<tr>
<th>법</th>
<th>명령·규칙 및 지침</th>
</tr>
</thead>
<tbody>
<tr>
<td>도로법(1952~현재)</td>
<td>도로구조령(1919~1970)</td>
</tr>
<tr>
<td></td>
<td>: 보도의 개량과 육교의 설계기준(1964)</td>
</tr>
<tr>
<td></td>
<td>도로구조령(1970~현재)</td>
</tr>
<tr>
<td></td>
<td>입체횡단시설기준(1978~현재)</td>
</tr>
<tr>
<td></td>
<td>: 동 해설(1970)</td>
</tr>
<tr>
<td></td>
<td>시각장애자 유도용 블록 설치지침(1985~현재)</td>
</tr>
<tr>
<td></td>
<td>방호책의 설치기준(1965~현재)</td>
</tr>
</tbody>
</table>


전 세계의 장애인에 대한 배려 추세에 발맞추어 일본 정부는 1993년 ‘장애자대책에 관한 법률’을 결정하며 장애인의 복지 정책을 발전시켰고, 이를 반영하여 인간중심의 도로조성을 강력하게 추진하게 되며, 같은 해 ‘도로구조령’의 개정으로 이어졌다. 개정의 내용은 다음과 같다.

1993년 도로구조령의 개정내용

<table>
<thead>
<tr>
<th>개정내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>휠체어 이용자의 원활한 통행을 위한 보도 등의 최소폭 확대(1.5→2.0m)</td>
</tr>
<tr>
<td>횡단보도, 버스정류장, 보행자 보도 등의 설치시 추가폭 규정 (2%)</td>
</tr>
<tr>
<td>횡단경사 보행자 전용도로 규정</td>
</tr>
<tr>
<td>고령자 신체장애자 이용의 배리어프리화 개념을 담은 고령자·신체장애인의 이용 원활화 촉진에 관한 법률이 제정되며, 그와 관련된 국토건설령이 중점정비지구에 대한 도로의 구조에 관한 기준이 확정된다.</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>보도의 일반적 구조에 관한 기존의 개정내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>보도의 형식으로 서미플랫형(단차 5cm)을 원칙으로 함</td>
</tr>
<tr>
<td>횡단경사는 기준 2%를 유지, 투수성 포장 등 원활한 배수 가능 시 1%이하로 함</td>
</tr>
<tr>
<td>기존의 마운트업 형식의 보도의 사양(천장내측부에 평탄한 보도 확보를 위해 구조 수정)</td>
</tr>
</tbody>
</table>
나. 도쿄도의 보도 관련 법규 및 기준

도쿄도는 1982년 「국제 장애자의 해 도쿄도 행동계획」을 작성한다. 1984년 「복지
거리 만들기 동경간담회」라는 자문기관을 설치하고, 도의 종합적인 거리만들기 추진
에 대한 조사 및 검토를 의뢰한다.

1985년, 1986년 중간보고와 최종보고의 결과물을 기초로 1988년에 「복지마을 만들
기 정비지침」을 제정하게 된다. 이를 통해 1989년부터는 「복지마을 만들기 구시정
촌 모델지구 정비사업」을 실시하였다.

또한 도쿄도는 「상당한 거리 동경」의 실현을 목표로 1994년에는 「상당한 거리 도쿄
구상간담회」를 설치하고, 조례제정을 포함한 복지마을 만들기에 대한 조사 및 검토를
실시한다. 이들에에는 「도쿄도 복지마을 만들기 조례」가 제정되었고, 이어 1996년에
는 그에 대한 시행규칙과 정비 매뉴얼이 책정되었다.

2000년에는 도로구조령의 개정, 배리어프리법 제정 등을 반영하여 「도쿄도 복지마을
만들기 조례」와 「동 시험규칙」, 정비 매뉴얼인 「도쿄도 지역 배리어프리화를 위한
가이드라인」이 개정되었다.

도쿄도 지역 배리어프리화를 위한 가이드라인

노인, 장애인 등을 포함한 모든 이들의 안전하고, 편리한 보행을 보장하며, 교통기관과
보행로의 연속성 확립을 도로정비의 기본원칙으로 하고 있다.

장애인들이 자주 이용하는 시설과 역, 버스정류소 등을 가장 짧게 연결하는 도로, 공
공시설, 상점 등을 비롯해, 이용가치가 높은 도로, 기존도로 중 안전성이 각별히 요구
되는 도로, 재해피난도로 등을 중점정비대상으로 선정한다.

도로의 종단경사나 도로의 인접부의 고저차에 의해 불가피한 경우와 기준에 적합하지
않은 좁은 도로를 적용대상에서 예외로 한다.

기준은 정비를 실시하는데 기본적으로 지켜야 할 정비기준과 현재 기술적, 관리적 그
외 주변상황 등에 의해 도 전체에 적용하기에는 어렵지만, 정비를 시행하는데 있어 바
람직한 보다 적극적인 내용을 담는 유도기준을 제시한다.
도쿄도 지역 배이어드디레곳을 위한 가이드라인의 보도 설치관련 주요기준

<table>
<thead>
<tr>
<th>항 목</th>
<th>기 준</th>
</tr>
</thead>
<tbody>
<tr>
<td>일반</td>
<td>보도폭</td>
</tr>
<tr>
<td>종단경사</td>
<td>5.0%이하</td>
</tr>
<tr>
<td>횡단경사</td>
<td>2.0%이하</td>
</tr>
<tr>
<td>보차도 경계단차</td>
<td>15cm 표준(10, 0) - 연석높이 10/15/20cm</td>
</tr>
<tr>
<td>건축한계</td>
<td>2.5m</td>
</tr>
<tr>
<td>횡단 보도 턱납 추기</td>
<td>연석낮춤 단차</td>
</tr>
<tr>
<td>진행방향 경사</td>
<td>5.0% 이하 (불가능시 8.0%)</td>
</tr>
<tr>
<td>움면 평탄부</td>
<td>1.0m 이상</td>
</tr>
<tr>
<td>아래 평탄부</td>
<td>1.5m 이상 (넓은 보도)</td>
</tr>
<tr>
<td>차량 진출 입부</td>
<td>구분</td>
</tr>
<tr>
<td>평탄부 유효폭</td>
<td>2.0m이상</td>
</tr>
<tr>
<td>진행방향 경사</td>
<td>10%이하(식수대-15%이하)</td>
</tr>
<tr>
<td>보차도높이차</td>
<td>5cm</td>
</tr>
<tr>
<td>보도 포장</td>
<td>평탄성, 잘 미끄러지지 않음, 배수 등을 고려하여 선택할 것</td>
</tr>
</tbody>
</table>
도쿄도 지역 배리어프리화를 위한 가이드라인(2000)

보도 일반

inecraft

폭도 폭 횡단경사와 보차도높이차

턱낮추기

좁은 보도

넓은 보도

차량진출입부

특수가교블록 사용을 원칙으로 함

식수대 설치 시 범위 내에 턱낮추기 시공
도쿄도 지역 배리어프리화를 위한 가이드라인(2000)

차량진출입부

대형차량의 통행이 많은 때 평탄부 1m이상 확보

평탄부 1m를 확보할 수 없을 때 전체낮춤

이면도로진입부

턱낮추기 부분은 차량진출입부와 동일하여 시각적 주의환기를 위해 포장재의 색을 달리함

특수블록설치폭은 이면도로폭보다 넓게, 턱낮추기 폭과 같게 함

일반구조

이면도로의 높이를 보도의 높이까지 올려 보도의 평탄부를 유지

보차도 경계단차를 2cm로 하여 기각장애인에게 경각심을 줄

절개형식으로 험프를 설치한 경우

이면도로의 높이를 보도의 높이까지 올리기 어려운 경우 보도면의 높이를 낮춤

절개형식으로 보도전체를 낮춤
3. 뉴욕

가. 미국의 보도 관련 법규 및 기준


도로교통 관련법규 및 기준

연방법전 도로편 제217조에서는 제217조에 의거한 연방의 보조를 받는 보도를 포함한 모든 도로는 미국 장애인법의 준수를 요구받는다고 규정하고 있다. 제652조에서는 미국 주(주) 도로교통공무원협회(AASHTO)의 「신설 자전거시설의 개 발을 위한 가이드(1999)」나 주 또는 지역 당국과 협력하여 개발하고 연방도로국의 부서에서 인정하는 설치 가이드를 자전거도로의 디자인 및 설치기준으로 사용하도록 규정한다. 또한 연방정부가 진행하는 프로젝트나 연방정부의 보조로 진행되는 모든 프로젝트에서 보도를 조성할 때 반드시 장애인을 배려하도록 정하고 있다.


교통엔지니어협회가 1998년에 발행한 「보행자시설의 디자인과 안전」에서는 보행자의 안전하고 효율적인 보행환경을 조성하기 위한 보행자시설의 디자인과 안전에 대한 가이드라인을 제시한다.
49U.S.C.(교통편)에서는 도로 신설 및 개보수 사업에 있어 연방도로국을 비롯해 각 주의 도로국, 접근성위원회(ACCESS BOARD) 등의 역할 및 의무, 교통안전시설 설치와 관련된 내용을 규정하고 있다.


육상교통효율화법은 주정부와 메트로폴리탄 계획부서(MPO: Metropolitan Planning Organization)의 근본적인 변화와 두 조직 간의 긴밀한 협력관계를 강조하며, 이전까지의 차량소통 중심의 교통체제에서 벗어나 보행자를 고려하고, 인근 지역주민의 의견을 교통계획에 반영하도록 규정하고 있다. 신체장애인뿐만 아니라 차량을 소유하지 못한 사람들에 대해서도 배려하도록 강조한다.

특히 보행시설에 대한 예산을 크게 증대시켰으며, 미국 장애인법을 따르는 보도 개보수에 대해서는 육상교통프로그램 기금을 사용할 수 있게 하였다. 장기계획이나 고속도로 및 교통측 개선사업과 관련한 교통개선사업(TIP : Transportation Improvement Program)에서도 반드시 보행자를 고려하도록 요구한다.

교통안전시설에 대해서는 우리나라의 도로안전시설 실무편람과 같은 연방도로국의 「교통규제장치 표준매뉴얼(MUTCD : Manual on Uniform Traffic Control Devices)」 등이 있다.

장애인 관련법규 및 기준


이러한 ANSI A117.1의 활용을 고무시키기 위해 의회는 1973년 「재활법」을 통과시켰다. 재활법은 주 정부 및 지역정부에서 수립하는 강제력을 가지는 법규 및 기준으로 ANSI A117.1의 상당분부를 차용하게 된다.


같은 해 교통국 역시 ADAAG 1~10절의 내용을 포함하는 「장애인 접근성 디자인 기준(ADA Standards for Accessible Design)」을 공포하였고, 장애인법의 제정으로 장애인 이동권 보장정책 및 계획은 이전에 비해 눈에 띄게 확대된다.

1999년 접근성위원회는 「장애인법(ADA)과 「건축장애물법(ABA : Architectural Barriers Act)」의 기준들을 통합개정할 것을 공포하였고, ADA-ABA 접근성 가이드라인이 통합본은 2004년에 제정된다.


연방도로국은 공청회를 통해 의견을 수렴하여 2005년 개정된 「공공도로의 접근성 기준」을 ADA-ABA 접근성 가이드라인의 보충 부록으로 활용하도록 권고하고 있다.
나. 뉴욕주 보도설치기준

뉴욕주 도로국은 1993년 주의 자전거 및 보행자를 위한 프로그램을 제안하고, 주 자전거 및 보행자 교통시스템에 대한 계획 초안을 작성한다.

같은 해 도시계획국에서는 「뉴욕시 녹도계획(A Greenway Plan for New york City)」를 수립하였다. 이는 뉴욕시, 롱아일랜드, 남허드슨 벨리에 포함하는 10개 카운티의 행정구역과 메트로폴리탄들의 장기계획을 담고 있다.

1995년 뉴욕주는 기존의 계획들을 토대로 「뉴욕주 자전거 및 보행교통계획(New York State Bicycle and Pedestrian Transportation Plan)」을 수립하였고, 1997년 제수립된 「뉴욕주 자전거 및 보행교통계획」은 현재까지 통용되고 있다.

그 밖에 보행자의 권리와 의무를 다루고 있는 것으로는 「뉴욕주의 운송교통법(Vehicle and Traffic(V&T) Law)」이 있다.

도로 디자인 기준으로는 「뉴욕주 도로디자인 매뉴얼(Highway Design Manual)」 제18장 보행자시설 디자인」이 있고, 「기준상세도(Metric Standard Sheet)」에서 요소별 세부치수와 시공지침을 제시하고 있다.

뉴욕주 교통국의 「도로디자인 매뉴얼(Highway Design Manual)」 제18장 보행자시설 디자인

뉴욕주의 교통정책은 연방정책(23CFR 652.5)을 준수하고, 디자인 가이던스와 일치하여 초기 계획단계에서부터 장애인을 포함한 보행자의 편의를 배려하도록 하고 있다.

연방도로나 연방기금의 보조를 받는 공사에서는 보도의 계획과 설계 및 시공에 보행자 및 장애인의 안전과 편의를 충분히 반영할 것과 모든 보행자시설의 시공, 유지, 관리, 개선 시에 「장애인법 접근성 기준」을 절저히 준수하도록 의무화하고 있다.

도로디자인 매뉴얼에서는 다음사항을 보행자시설 설치 시 디자인가이드로 활용하도록 제시하고 있다.
- [접근성위원회] 장애인법 접근성 가이드라인
- [미국 주(州) 도로교통공무원협회] 도로와 가로의 기하구조 디자인에 관한 정책
  보행자 시설의 계획, 디자인 및 운영을 위한 가이드
- [연방도로국] 교통규제장치 표준매뉴얼
- [뉴욕시] 뉴욕시 조례규칙집 B(뉴욕주 교통규제장치 표준매뉴얼)

뉴욕주 도로디자인 매뉴얼 - 제18장 보행자시설 디자인 보도 관련 기준

<table>
<thead>
<tr>
<th>항 목</th>
<th>기 준</th>
</tr>
</thead>
<tbody>
<tr>
<td>일반</td>
<td>보도폭 1.525m(기준미만 시 61m마다 1.525m×1.525m 교행구역)</td>
</tr>
<tr>
<td></td>
<td>횡단경사 2.0%이하</td>
</tr>
<tr>
<td>용도별 우선 통행로</td>
<td>상업지역 1.5<del>1.8m 주거지역 0.6</del>1.8m 잔디는 최소(1.0m)</td>
</tr>
<tr>
<td></td>
<td>조례규정은 최소1.0m</td>
</tr>
<tr>
<td>건물앞</td>
<td>우선통행로 1.525m</td>
</tr>
<tr>
<td></td>
<td>건물앞 0.6m</td>
</tr>
<tr>
<td></td>
<td>전체보도폭 3.6m</td>
</tr>
<tr>
<td></td>
<td>시설한계 2.0m</td>
</tr>
<tr>
<td>차량 진출 입구</td>
<td>평탄부 유효폭 1.525m이상(횡단경사 2%이하)</td>
</tr>
<tr>
<td></td>
<td>경사부 시공길이 0.6m 이하</td>
</tr>
<tr>
<td></td>
<td>진행방향 경사 8~12%</td>
</tr>
<tr>
<td></td>
<td>보차도높이차 0cm</td>
</tr>
<tr>
<td>횡단 보도 텅 둔 추기</td>
<td>연석낮춤 단차 0cm</td>
</tr>
<tr>
<td></td>
<td>진행방향 경사 5.0~8.33%(보도폭 4.5m미만 시 8.33%)</td>
</tr>
<tr>
<td></td>
<td>횡단경사 2%이하</td>
</tr>
<tr>
<td></td>
<td>수평참 수평참 설치 시 수평참 설치</td>
</tr>
<tr>
<td>안전섬 및 중앙섬</td>
<td>5차선 이상 도로나 폭 18.3m 이상인 도로에 설치가려</td>
</tr>
<tr>
<td>보도 포장</td>
<td>안정, 건고, 미끄러지지 않는 것에 저항력을 가진, 전천후 내구성이 깊은 재료로 포장</td>
</tr>
<tr>
<td>보도면 수직단차</td>
<td>최대 6.4mm(기울기 1:2보다 완만하면 13mm)</td>
</tr>
<tr>
<td>배수구 덮개구멍</td>
<td>최대 13mm</td>
</tr>
</tbody>
</table>

제4장 세계 대도시 보도설치기준 비교 / 79
보도폭

주거지역
A: 0.6~1.8m(전디 최소 1.0m)
B: 2.0m

상업지역
A: 1.5~1.8m
B: 0.6m
C: 3.6m
D: 2.0m

우선통행로
폭 1.5m 미만 시 61m이하 긴격으로 교행구역확보
1.525m × 1.525m

차량진출입부

길이 0.6m이상 경사 8~12%
제4장 세계 대도시 보도설치기준 비교

뉴욕주 기준상세도

연석경사로

수직 연석경사로

수직 연석경사로 단면

교차부 연석경사로

평행 연석경사로
다. 뉴욕시의 보도설치기준

뉴욕시의 보도설치기준은 뉴욕주의 기준보다 더욱 강화된다. 한 예로 뉴욕시 도로국의 도로규정(Highway Rules)에서는 건물주에게 집 앞 보도관리의 책임을 부여한다.

만약 건물주가 양호하지 않은 상태의 보도를 방치하는 경우에 뉴욕시가 직접 보도를 개보수하고 그에 대한 비용을 건물주에게 청구한다.

뉴욕시 도로규정(2006 개정)

뉴욕시 도로규정에서는 모든 공공시설 및 기반시설을 설치, 보수, 관리할 때 있어 다음과 같은 기준을 준수하도록 정하고 있다.

<table>
<thead>
<tr>
<th>공사 디테일 기준</th>
<th>기준 설명서</th>
</tr>
</thead>
<tbody>
<tr>
<td>보도, 연석, 도로와 기타 인프라의 디자인 계획 및 가이드라인 제출을 위한 지시서</td>
<td></td>
</tr>
</tbody>
</table>

뉴욕시 건설국은 소유주나 건축주에게 다음의 사항을 의무적으로 제출하도록 하며, 시공 후에는 약 645㎡의 코어를 채취하여 시험소에 보내 검사를 받게 한다. 때때로 특정사항에 대한 소유주나 건축주에게 관련 포기서 요구하기도 한다.

<table>
<thead>
<tr>
<th>보도 관리 기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>항 목</td>
</tr>
<tr>
<td>연석에 수직방향 경사</td>
</tr>
<tr>
<td>종단경사</td>
</tr>
<tr>
<td>포장</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
보도, 연석, 도로 디자인 계획 및 가이드라인 제출 지침서

보도, 연석, 도로의 디자인 계획 및 가이드라인 제출 지침서는 모든 사업주가 도로국에 제출해야하는 서류로서 보도, 연석, 도로포장 등의 요구조건을 제시한다.

<table>
<thead>
<tr>
<th>항 목</th>
<th>기 준</th>
</tr>
</thead>
<tbody>
<tr>
<td>유효폭</td>
<td>1.525m 이상</td>
</tr>
<tr>
<td>종단경사</td>
<td>장애인 접근성을 고려한 옆면경사, 진입로 경사가 되게</td>
</tr>
<tr>
<td>횡단경사</td>
<td>2% 이하</td>
</tr>
<tr>
<td>연석높이</td>
<td>연석 재료에 따라 높이가 다름, 화강암 청재 표면가공 &gt; 콘크리트 &gt; 화강암 블록</td>
</tr>
<tr>
<td>표층두께</td>
<td>일반(10cm), 차량진출입부(18cm)</td>
</tr>
<tr>
<td>기초두께</td>
<td>돌과 자갈(15cm)</td>
</tr>
<tr>
<td>평칭줄눈</td>
<td>6.1m이하 마다 / 연석의 줄눈과 일치하게 시공</td>
</tr>
<tr>
<td>승인</td>
<td>승인된 주차지역, 물품하역지역에서만 시공가능</td>
</tr>
<tr>
<td>폭</td>
<td>최대 9.15m</td>
</tr>
<tr>
<td>노상시설과 거리</td>
<td>나무, 전선주, 소화전, 가로등 - 2.135m</td>
</tr>
</tbody>
</table>
| 녹색 표시 | 주거지역-1.525m, 기타지역-7.625m
| 보차도 단차 | 1.6cm 이하(모서리 등록계 시공)               |
| 진행방향 경사 | 8%이하                                    |
유니버설 디자인 뉴욕 II

유니버설 디자인 뉴욕 II는 2001년 뉴욕시가 발행한 유니버설 디자인 뉴욕과 한 세트로서 유니버설 디자인 개념을 건축가들이 건축물에 적용하도록 적극 장려하기 위해 2004년에 제작된 것이다.

유니버설 디자인을 적용했던 실제 건물 및 프로젝트로부터 많은 양호한 사례를 소개하고 디자인 심사 체크리스트를 제시하고 있다.

또한 출입구, 길안내, 주차장 및 정류장, 좌석, 문화시설, 공공기관 및 놀이시설, 정차, 작업시설 등과 관련된 유니버설 디자인을 간명하게 소개한다.

유니버설 디자인 뉴욕 II의 보도 관련 기준

<table>
<thead>
<tr>
<th>항 목</th>
<th>기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>일반</td>
<td>유효폭</td>
</tr>
<tr>
<td></td>
<td>종단경사</td>
</tr>
<tr>
<td></td>
<td>횡단경사</td>
</tr>
<tr>
<td></td>
<td>유효폭 내 시설한계</td>
</tr>
<tr>
<td></td>
<td>수직높이 변화</td>
</tr>
<tr>
<td></td>
<td>격자구명</td>
</tr>
<tr>
<td></td>
<td>포장 및 마감</td>
</tr>
<tr>
<td></td>
<td>턱낮추기</td>
</tr>
<tr>
<td></td>
<td>진행방향 경사</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>플래어(열면) 경사</td>
</tr>
<tr>
<td></td>
<td>보차도 경계단차</td>
</tr>
</tbody>
</table>
4. 런던

가. 영국의 보도설치 관련 법규 및 기준

도로관련 법규 및 기준


<table>
<thead>
<tr>
<th>법</th>
<th>명령규칙</th>
</tr>
</thead>
<tbody>
<tr>
<td>도로법 1980(C.66)</td>
<td>도로 (협프) 규칙 1990</td>
</tr>
<tr>
<td>교통정책통화법 1992</td>
<td>도로 (교통 정책화) 규칙 1993</td>
</tr>
<tr>
<td>도로교통법 1984</td>
<td>웨리칸 횡단보도 규칙 1987</td>
</tr>
<tr>
<td>통행권법 1990</td>
<td></td>
</tr>
<tr>
<td>신설도로 및 가로공사법 1991</td>
<td></td>
</tr>
<tr>
<td>교통법 2000</td>
<td></td>
</tr>
</tbody>
</table>

우리나라의 지침 및 편람에 해당하는 것으로는 현재 교통부의 교통자문리플렛(TALs), 지역통행지침(LTNs), 도로공사(Highway Agency)의 도로 및 교량 디자인 매뉴얼(DMRB) 등이 지침 및 기준으로 활용되고 있다. 2)

1) 보통 Act가 법, Order in Council, Orders of Council이 시행령, Regulations, Rules, Orders, (Directions), Warrants, Schemes 등이 시행규칙에 해당한다. 회보(Circulars), 전언 (Memorandum), 의사록(Minutes)은 장관이 지방자치단체 등에 발하는 법령의 해석기준, 기본방침에, Codes of Practice는 행정지도, 지침에 해당한다. 그 밖에 보다 자세한 영국법 체계에 대해서는 「외국법령 검색방법(법제처, 2004)」에 잘 설명되어 있다.
2) 교통부(DfT)의 전신인 DTLR에서 도로와 교통문제를 다루는 도로시설즈의 회보를 발행하였으나, 교통부에서는 회보를 발행하지는 않는다. 그러나 일부 회보는 여전히 통용되고 있으며, 현재
특히 「도로 및 교량 디자인 매뉴얼(DMRB)」 은 BA시리즈, BD 시리즈, BE시리즈, TD시리즈, HA시리즈, HD시리즈 등 각종 지침들을 기초로 집대성한 것으로 지속적인 업데이트를 실시하고 있다.3)

<table>
<thead>
<tr>
<th>구분</th>
<th>기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>지역교통지침(LTNs)</td>
<td>보행자시설&lt;br&gt;LTN 2/86 자전거이용자와 보행자의 공동사용</td>
</tr>
<tr>
<td></td>
<td>도로횡단&lt;br&gt;LTN 1/95 보행자 횡단 평가&lt;br&gt;LTN 2/95 보행자 횡단 디자인</td>
</tr>
<tr>
<td>도로 및 교량 디자인 매뉴얼(DMRB)</td>
<td>Vol.6&lt;br&gt;Sec.3&lt;br&gt;Part 3&lt;br&gt;TA 57/87 도로변 특징</td>
</tr>
<tr>
<td></td>
<td>Vol.6&lt;br&gt;Sec.3&lt;br&gt;Part 5&lt;br&gt;TA 87/04 간선도로 교통정유화&lt;br&gt;TA 90/05 보행로, 자전거도로, 말의 길의 설계</td>
</tr>
<tr>
<td></td>
<td>Vol.7&lt;br&gt;Sec.2&lt;br&gt;Part 5&lt;br&gt;HD 39/01 보도디자인</td>
</tr>
<tr>
<td></td>
<td>Vol.7&lt;br&gt;Sec.4&lt;br&gt;Part 3&lt;br&gt;HD 40/01 보도관리</td>
</tr>
</tbody>
</table>


통용되는 회보는 교통부의 홈페이지에서 확인할 수 있다.
3) 교량과 구조물 권고서(BA), 교량과 구조물 교통부 기준(BD), 교량과 구조물 기술전언(BE), 교통공학과 세어기준(TD), 도로 권고서(HA), 도로기준(HD)
장애인 관련법규와 기준


『장애인차별방지법 1995』은 고용, 교육, 상품, 시설 및 서비스 이용에 있어 장애인들이 차별을 받지 않도록 하기 위한 법으로 Part III에서는 장애인들의 재가, 시설, 서비스, 건물의 접근성에 대한 권리를, Part V에서는 교통시설(수단)과 관련된 내용을 다루고 있다.


<table>
<thead>
<tr>
<th>법</th>
<th>행정지침(Code of Practice)</th>
</tr>
</thead>
</table>
| · 장애인법 1981  
 · 장애인차별방지법 1995/2005 | · DDA Part 3: 재가, 시설, 서비스 및 부동산에 대한 접근권 |
| 명령·규칙(Statutory Instruments) | · DDA Part 3: 접근권: 공공으로의 서비스, 공공기관의 기능, 사적 클럽, 부동산 |
| · 공중교통 접근성 규칙 2000  
 · 장애인차별방지(수송차량) 규칙 2005 | DDA Part 3 교통부분 보충수송차량의 사용과 준비, 행정지침 |
| 지침 및 가이드라인 | · 점자블록포장 가이드라인  
 · 포괄적인 이동성 2002/2005 |

1998년에는 특히 시각장애인에게 보다 안전한 보행환경을 제공하기 위한, 횡단보도와 교차되는 보도의 연석낮춤, 교통섬, 기타 발생할 수 있는 모든 상황에서의 점자블록 설치방법을 구체적으로 제시하는 『점자블록포장 가이드라인(Guidance on the use of Tactile Paving Surfaces)』을 연방교통부와 스코틀랜드 오피스가 협력하여 마련하였다.

교통부에서는 관련기관 및 부서에서 각각의 상황에 일반적으로 적용할 수 있는 가이드라인으로 포괄적인 이동성(Inclusive mobility)을 2002년에 발행하였다. 2005년에 개정한 포괄적인 이동성은 전적으로 『장애인차별방지법』을 따르는 것도, 법적인 강제력을 갖는 것도 아니지만, 현재 서비스 공급자들이 장애인 시설을 설치할 때 참고하는 최선의 시행가이드라인이다.
나. 대런던정부(Greater London Authority)의 보도관련 정책 및 기준

1999년에 「대런던 정부법(Greater London Authority Act 1999)」이 제정되고, 2000년 32개의 구(Borough)와 런던시(Corporation of London)를 통합한 대런던 정부(GLA)가 수립된다.

대런던정부법은 시장에게 런던의 공간개발전략계획에 대한 의무를 지운다. 런던계획은 기존의 정책가이드를 대신하고, 구(borough) 지역계획들은 반드시 이를 준수해야한다.

대런던 정부의 첫 시장인 켄 리빙스턴(Ken Livingstone)은 2004년 1월 런던계획을 수립하였고, 2004년 4월부터 이에 대한 세부 해결가이드(Supplementary Planning Guidance, SPG)를 마련하여 현재까지 7종이 발행되었다.


4) BS8300 : Design of buildings and their approaches to meet the needs of disabled people, British Standards Institute
가로경관 가이드라인(Streetscape Guidance)

런던시장의 교통전략과 런던계획에서 제시된 원칙들을 따르는 가이드라인으로서 런던 전역의 가로개선사업의 질적 수준에 대한 지표 역할을 한다.

가로경관 가이드라인은 가로경관 개선 및 유지·관리함에 있어 준수할 원칙을 제시하고 있으며, 정기적으로 업데이트 될 예정이다.

가로경관요소별, 지역별 디자인 지침과 29개의 가로경관의 주제별 상세도를 제시하고 있으며, 가로시설물, 교통표지판, 신호등, CCTV, 가로수, 지진모와 오토바이 주차시설, 버스정류장, 택시 승차대 등 보도에 설치되는 각종 시설물에 대한 디자인 기준 등도 제시하고 있다.

대런던 가로경관 가이드라인

<table>
<thead>
<tr>
<th>항 목</th>
<th>기 준</th>
</tr>
</thead>
<tbody>
<tr>
<td>보도폭</td>
<td>구성 건물앞 공간-보행자 구역 - 도로시설물 구역-연석구역</td>
</tr>
<tr>
<td></td>
<td>보행자구역 1.0m이상</td>
</tr>
<tr>
<td></td>
<td>도로시설물 - 0.5~1.0m : 볼라드, 가로등, 신호등, 벤치, 휴지통</td>
</tr>
<tr>
<td></td>
<td>- 1.0~1.6m : 공중전화부스, 자전거 주차시설(45° 설치)</td>
</tr>
<tr>
<td></td>
<td>- 1.6~2.0m : 자전거 주차시설(90°)</td>
</tr>
<tr>
<td>진행방향경사</td>
<td>5.0~8% (5%이하 권장)</td>
</tr>
<tr>
<td>횡단경사</td>
<td>2.5%</td>
</tr>
<tr>
<td>보차도 경계단차</td>
<td>12.5cm 표준(버스정류장 14cm)</td>
</tr>
<tr>
<td>유효폭 내 시설한계</td>
<td>2.3m</td>
</tr>
<tr>
<td>이면도로 진입부</td>
<td>평탄부 유효폭</td>
</tr>
<tr>
<td></td>
<td>진행방향 경사</td>
</tr>
<tr>
<td>차량 진출입부</td>
<td>평탄부 유효폭</td>
</tr>
<tr>
<td></td>
<td>진행방향 경사</td>
</tr>
<tr>
<td></td>
<td>보차도 경계 단차</td>
</tr>
<tr>
<td>횡단보도 턱낮추기</td>
<td>진행방향 경사</td>
</tr>
<tr>
<td></td>
<td>보차도 경계 단차</td>
</tr>
<tr>
<td></td>
<td>보도 포장</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>점자 블록</td>
<td>교차점 진행방향</td>
</tr>
<tr>
<td></td>
<td>교차점이 아닌 경우</td>
</tr>
</tbody>
</table>
가로경관 가이드라인

가로시설물 설치

2.95~4.05m 보도의 가로시설물 설치

4.05m이상 보도의 가로시설물 설치

연석경사로

보도에 걸친 주차

가로시설물 설치
5. 기타

앞에서 살펴본 일본 도쿄, 미국 뉴욕, 영국 런던 이외에 프랑스 파리와 독일의 베를린의 보도설치와 관련된 계획 및 지침을 검토하였다.

가. 프랑스 파리

1846년 제정된 파리 지방법에서 건축물 사이의 영역의 40% 공간을 보도로 확보하도록 규정하였다. 이후 1879년 7월부터 시행된 부칙에서는 도로폭 10m, 12m에서 각각 1.7m, 2.4m의 보도를 설치하도록 규정하고 있다.

일반화 되었던 이 법은 도로가 확장됨에 따라 점차 효율을 잃게 되고, 보도에 대한 법률조문은 유명무실해진다. 1992년 무렵에 남아있는 보도의 폭에 대한 법은 장애인들을 위한 관리적 측면만 남게 되었다.

이하에서는 「공공공간의 설치에 대한 헌장(Charte D’aménagement Des Espaces Civilisés, 2002)」과 「장애인의 공공도로 접근성에 관한 기본계획(Schéa directeur d’accessibilité de la voie publique aux personnes handicapées, 2002)」에 제시된 보도 관련 규정을 중심으로 살펴보고자 한다.

공공공간 설치에 대한 헌장(파리시, 2002)

공공공간 설치에 대한 헌장에서는 보도를 점용허가구역, 보행자구역, 가로시설 설치구역 및 식수대 등 세 부분으로 구분한다.

보도의 중앙에 위치한 보행자구역에는 어떠한 시설도 설치하지 못하게 한다. 가로시설물 설치구역은 보도의 전체폭의 1/3이하가 되도록 하여, 최대 2.5m를 넘지 않도록 제한한다. 단 가로수를 설치할 경우에는 3.0m로 한다.

거동이 불편한 사람들을 위해 연석을 낮추고, 장애인용 주차공간을 마련하며 버스 및 공공시설로의 접근성을 높여 보행환경을 개선하며, 자전거 통행도로는 자동차 통행과 분리하고, 보도에 따라 설치되며 가능한 한 보행자와 멀리 떨어지게 배치하도록 규정하고 있다.
보도폭 구성

현 도로에서의 도시가로시설 설치규정

<table>
<thead>
<tr>
<th>구분</th>
<th>2.4m 이하</th>
<th>2.4~6.0m</th>
<th>6.0m 이상</th>
<th>파사드 열</th>
<th>치도 열</th>
</tr>
</thead>
<tbody>
<tr>
<td>접용허가구역</td>
<td>첫 접이물까지 보도의 폭이 1/3 이상, 가로수까지 최소 2m 일때</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>적은 보행량</td>
<td>1.4m</td>
<td>1/3 이상, 최소 1.8m</td>
<td>보도의 1/3이상</td>
<td></td>
<td></td>
</tr>
<tr>
<td>많은 보행량</td>
<td>1.8m</td>
<td>2.4m</td>
<td>보도의 1/3이상, 최소 2.4m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>가로시설 위치</td>
<td>파사드에 설치 선호, 허용 또는 바람직함</td>
<td>허용 또는 바람직함</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>가로수축 위</td>
<td>최대폭</td>
<td>0.4m</td>
<td>0.6m</td>
<td>1.4m</td>
<td>1.9m</td>
</tr>
<tr>
<td>돌출부경계거리</td>
<td>최대높이</td>
<td>0.4m</td>
<td>0.6m</td>
<td>0.6m</td>
<td>/</td>
</tr>
<tr>
<td>테라스 최소거리</td>
<td>가로시설 없음, 가로시설 없음</td>
<td>가로시설 없음</td>
<td>테라스의 길이의 1.5배와 적어도 2.4m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>가로수축에서의 최소거리</td>
<td>/</td>
<td>/</td>
<td>2.6m</td>
<td>2.6m</td>
<td></td>
</tr>
<tr>
<td>가로수 보호판의 최소거리</td>
<td>/</td>
<td>/</td>
<td>2.0m</td>
<td>2.0m</td>
<td></td>
</tr>
<tr>
<td>식수대</td>
<td>최소폭</td>
<td>/</td>
<td>/</td>
<td>1.6m</td>
<td></td>
</tr>
<tr>
<td>돌출부경계거리</td>
<td>/</td>
<td>/</td>
<td>0.35m</td>
<td>0.35m</td>
<td></td>
</tr>
</tbody>
</table>

공공공간 설치에 대한 현장
공공공간 설치에 대한 헌장에 대한 관련 규정

<table>
<thead>
<tr>
<th>항 목</th>
<th>기 준</th>
</tr>
</thead>
<tbody>
<tr>
<td>보도폭</td>
<td>구 성</td>
</tr>
<tr>
<td></td>
<td>도로시설물 설치구역</td>
</tr>
<tr>
<td>안전섬</td>
<td>설치기준</td>
</tr>
<tr>
<td></td>
<td>폭</td>
</tr>
<tr>
<td>시설관계</td>
<td>보행자구역 내 높이 2m</td>
</tr>
</tbody>
</table>

나무 사이에 배달차량주차구역을 마련

마우 아랫부분의 경계식 혹은 보호시설

정사진의 설치기준

- 측면도로 인에 배달차량주차구역 마련(좌)
- 보호도로 반대쪽, 최소 3m폭의 평지위에 배달주차구역 마련(상)
장애인의 공공도로 접근성에 관한 기본계획(파리시, 2002)

이 제안은 파리시가 행정 법률 및 행정지침, 보행자 및 장애인 협회와 공동작업을 통해 수립한 것으로 보도와 차도의 보수, 시각장애인을 위한 청각신호등 설치, 바다 신호표지, 도시가로시설 등으로 구성된다.

공공교통에 개방되는 모든 도로는 법령이 정하는 기술적 규정에 따라 장애인의 접근이 가능하도록 관리개선되어야 한다. 이와 같은 접근성의 의무화는 신설 도로, 도로구조 변경, 보도 보수, 주차부지 신설 및 조정, 대중교통 차량 승차장의 관리개선, 삼색 신호등의 설치시에 모두 적용된다.

<table>
<thead>
<tr>
<th>항 목</th>
<th>기 준</th>
</tr>
</thead>
<tbody>
<tr>
<td>보도폭 (1.4m 이상)</td>
<td>구 성</td>
</tr>
<tr>
<td></td>
<td>보행자구역</td>
</tr>
<tr>
<td></td>
<td>접용허가구역</td>
</tr>
<tr>
<td></td>
<td>도로시설구역</td>
</tr>
<tr>
<td>경사</td>
<td>진행방향경사</td>
</tr>
<tr>
<td></td>
<td>수평참 간격</td>
</tr>
<tr>
<td></td>
<td>길이</td>
</tr>
<tr>
<td></td>
<td>횡단경사</td>
</tr>
<tr>
<td>횡단 보도 탁단 추기</td>
<td>탁단추기 폭</td>
</tr>
<tr>
<td></td>
<td>평탄부</td>
</tr>
<tr>
<td></td>
<td>진행방향경사</td>
</tr>
<tr>
<td></td>
<td>연석면경사</td>
</tr>
<tr>
<td></td>
<td>보차도 높이차</td>
</tr>
<tr>
<td></td>
<td>블러드 설치간격</td>
</tr>
<tr>
<td>횡단보도예티 설치</td>
<td>횡단보도예티 설치</td>
</tr>
<tr>
<td>보도 포장 및 마감</td>
<td>보도면에 요철, 표면의 구멍이나 틈의 길이 및 직경 2cm이하 미끄럼지 않는 재질 포장</td>
</tr>
</tbody>
</table>
### 장애인의 공공도로 접근성에 관한 기본계획 (2002)

<table>
<thead>
<tr>
<th>진행방향 경사</th>
<th>4% ≤ p &lt; 5%</th>
<th>5% ≤ p &lt; 8%</th>
<th>8% ≤ p &lt; 12%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4m이상</td>
<td>10m이상</td>
<td>2m이상</td>
<td>0.5미만</td>
</tr>
</tbody>
</table>

전체 도로의 경사에 따른 수평단의 간격

- 보차도 경계단차 2cm
- 보차도 경계단차 4cm
- 턱낮추기 폭 1.4m이상
- 연속경사 12%이하
- 평탄부 1.4m이상
- 연속경사로 경사 5%이하

 트랫보도에 2층의 안내선 설치

.cz5y

- 블라드 형태

- 버스정류장에서 보도확장
나. 독일 베를린

독일 베를린의 사례로서는 베를린시의 『도시와 광장의 건설기준에 관한 규칙 (Handbuch zur Gestaltung von Straßen und Plätzen in Berlin)』에서 보도폭을 결정하는 기준과 교량유형을 중심으로 살펴본다.

도시와 광장의 건설기준에 관한 규칙

베를린의 경우 보도폭을 결정할 때의 그 기준이 보다 복잡하다. 베를린의 도시와 광장의 건설기준에 관한 규칙에서는 보도폭 결정 시 고려하는 요소로서 다음과 같이 다섯 가지를 제시하고 있다.

1. 공간의 형태: 도로, 광장, 지역간 도로, 도심 내부 이용 도로
2. 지역공간구조: 고도시, 도심부, 신도심, 지역중심, 지구중심
3. 도로폭: 광로, 대로, 중로
4. 토지이용
5. 교통량(보행량)


독일에서도 보도를 Oberstreifen, Gehbahn, Unterstreifen의 세 영역으로 나누고 있으며, 이에 대한 폭의 기준은 토지이용에 따라 다르다.

<table>
<thead>
<tr>
<th>공간유형</th>
<th>보도폭</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤ 4m</td>
</tr>
<tr>
<td>A1.1 중심도로, 변화가</td>
<td>2</td>
</tr>
<tr>
<td>A1.2 도시도로</td>
<td>1.5</td>
</tr>
<tr>
<td>A2 도시녹지도로</td>
<td>2</td>
</tr>
<tr>
<td>A3 자연환경 도로</td>
<td>2</td>
</tr>
<tr>
<td>A4 교통전용도로</td>
<td>1.5</td>
</tr>
<tr>
<td>A5/6 단지내 도로</td>
<td>1.5</td>
</tr>
</tbody>
</table>

범례: 보도폭의 차이가 없는 보도 Oberstreifen, Gehbahn, Unterstreifen

1-1m 폭의 화강석으로 포장된 인도 2-1m 폭의 화강석으로 포장된 인도
6. 비교 및 종합

가. 국가별 기준 비교

각국마다 또 각 도시마다 내부적으로도 조금씩 차이를 보이고 있지만, 보도 설치와 관련된 국가차원의 기준들을 비교하여 정리하면 다음과 같다.

보도폭에 관해 살펴보면 한국과 일본은 보도폭을 규정하고, 보도위에 설치되는 도로시설물에 대한 폭을 규정하고 있는 반면, 미국과 영국 및 프랑스 등은 보도를 3~4개의 구역으로 구분하여 각각의 폭을 규정하고 있음을 알 수 있다.

보도의 구역구분은 보도 위에 설치되는 도로시설물들의 설치 위치를 규정하므로 보도의 점용 등을 규제하게 되어 유효보도폭 확보에 유리하게 작용되므로 보도시설물 설치구역을 지정하여 보도에 시설물들이 무분별하게 설치되는 것을 방지할 필요가 있다.

보도턱에 대한 규정은 대부분의 비교국가의 기준이 10~15cm인 것에 비해 한국의 기준이 25cm이하로 높게 책정되어 있고, 이것이 보도의 경사가 심해지는 원인으로 작용하고 있다. 따라서 보도턱의 기준은 15cm이하로 낮추는 것이 바람직하다.

보도 경사에 대해서는 종단경사 기준은 별 차이가 없었으나, 횡단경사에 대해서 외국이 2% 전후로 규정하고 있는 반면 한국은 배수처리를 고려하여 4%이하로 규정하고 있다. 횡단경사가 심해질 경우 보행불편은 물론 장애인 등의 통행에도 큰 불편을 줄 수 있으므로 횡단경사를 2%대로 낮추고, 그와 함께 배수처리문제에 대한 규정을 함께 마련할 필요가 있다.

또한 우리의 경우 이면도로 진입부나 대로진입하는 차량진출입부에 대한 기준이 미비한 실정이다. 이면도로 진입부나 차량진출입부에서 보도를 없애거나 평탄성을 훼손한 경우가 다반사이므로 보도의 평탄부를 유지할 수 있는 세부 기준이 마련되어야 한다.
<table>
<thead>
<tr>
<th>국가</th>
<th>기준</th>
<th>보도폭(m)</th>
<th>보도턱(cm)</th>
<th>보도경사 이하(%)</th>
<th>시설한계 /가로수(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>1</td>
<td>1.5</td>
<td>가로수 1m, 기타 0.5m</td>
<td>25이하</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.0</td>
<td>(1.2)</td>
<td>25이하</td>
<td>5.56 (8.33)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.0</td>
<td>(1.5)</td>
<td>15~22.5</td>
<td>5.56 (8.33)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.0/3.5</td>
<td>※</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>일본</td>
<td>5</td>
<td>2.0</td>
<td>-</td>
<td>표준15 터널25/배수5</td>
<td>5.0 (8.0)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.0/3.5</td>
<td>-</td>
<td>15이상~간선20 다리/터널25</td>
<td>5.0 (8.0)</td>
</tr>
<tr>
<td>미국</td>
<td>7</td>
<td>1.525</td>
<td>(0.915)</td>
<td>-</td>
<td>1.0(2.0)</td>
</tr>
<tr>
<td>영국</td>
<td>8</td>
<td>2.0(1.3)</td>
<td>Zone 설정</td>
<td>10이하&lt;7.5&gt;</td>
<td>1.25~5.0 (8.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>국가</th>
<th>기준</th>
<th>횡단보도에서 턱낮추기</th>
<th>처량진출입부</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>보차도면 높이(cm)</td>
<td>경사(%이하)</td>
<td>폭(m)</td>
</tr>
<tr>
<td>한국</td>
<td>진행</td>
<td>횡단/염면</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.0</td>
<td>8.33</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.0</td>
<td>8.33&lt;5.0&gt;</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>일본</td>
<td>5</td>
<td>2.0</td>
<td>5.0 (8.0)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.0</td>
<td>5.0</td>
</tr>
<tr>
<td>미국</td>
<td>7</td>
<td>1.3</td>
<td>8.33</td>
</tr>
<tr>
<td>영국</td>
<td>8</td>
<td>1.2</td>
<td>5~8.33</td>
</tr>
</tbody>
</table>

※<권장치>, (완화치)
*보도폭 3m, 지붕벤치 2m, 벤치 1m, 가로수 1.5m, 기타 0.5m
나. 도시별 기준 비교

서울, 도쿄, 뉴욕주, 대런던의 보도 관련 기준들을 살펴볼 때 그 디자인 원칙 및 구성 내용은 대부분 유사함을 알 수 있다.

뉴욕주나 대런던의 경우에는 중요 요소들의 수치를 기입한 평면도, 단면도와 요소별 시공포인트를 제시하는 상세도면을 작성보급하고 있는데, 이는 보행환경의 규격화에 효과적일 것으로 보인다.

뉴욕주 뉴욕시 경우에는 집 주인에 의해 설치된 보도의 코어를 채취하여 검사하고 불량한 보도를 신고하는 프로그램을 운영하는 등 보도의 연속성과 평탄성을 유지하기 위한 남다른 노력을 보인다.

서울시의 경우 기준은 횡단경사의 기준이 타 도시에 비해 높게 설정되어 있고, 락낮추기의 경사가 5.6%로 횡단되도 있었다. 또한 락낮추기 시공사 평탄성을 유지해야하는 평탄부 폭, 락낮추기 폭 등의 세부적인 설치기준이 미흡한 실정이다.

연속적이고 평탄한 보행환경 조성을 위한 보도 관리를 위해서라도 보다 세부적인 지침을 담는 상세도면이 첨부된 서울시의 보도설치기준의 수립이 필요하다.

도시별 보도 비교기준

<table>
<thead>
<tr>
<th>도시</th>
<th>기준 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>서울</td>
<td>서울시 장애인 편의시설 설치 매뉴얼</td>
</tr>
<tr>
<td>도쿄</td>
<td>동경도 복지마을만들기 조례 시설정비매뉴얼</td>
</tr>
<tr>
<td>뉴욕주</td>
<td>뉴욕주 교통부 도로디자인 매뉴얼-보행자시설 디자인 편</td>
</tr>
<tr>
<td>뉴욕시</td>
<td>보도, 연석, 도로 디자인 계획 및 가이드라인 제출 지침서 유니버설 디자인 II</td>
</tr>
<tr>
<td>대런던</td>
<td>가로경관 가이드라인</td>
</tr>
</tbody>
</table>
도시별 보도설치기준 비교

<table>
<thead>
<tr>
<th>도시</th>
<th>보도폭(m이상)</th>
<th>보도턱(cm)</th>
<th>보도경사(이하)</th>
<th>시설한계/가로수(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>서울</td>
<td>2.0(1.2-1.5m×1.5m교행)</td>
<td>6~12</td>
<td>5.6%</td>
<td>3.3%    2.1</td>
</tr>
<tr>
<td>도쿄</td>
<td>2.0(1.0m-1.5m교행)</td>
<td>15cm표준</td>
<td>5.0%</td>
<td>2.0%    2.5</td>
</tr>
<tr>
<td>뉴욕주</td>
<td>1.525(1.2)</td>
<td>10/15</td>
<td>-</td>
<td>2%      2.0</td>
</tr>
<tr>
<td>뉴욕시</td>
<td>1.525</td>
<td>재료에 따라 달라</td>
<td>장애인 배려</td>
<td>2%      -</td>
</tr>
<tr>
<td>런던</td>
<td>1.0</td>
<td>12.5</td>
<td>5~8%</td>
<td>2.5%    2.3</td>
</tr>
</tbody>
</table>

횡단보도에서 탁낮추기

<table>
<thead>
<tr>
<th>도시</th>
<th>보차도면 높이(cm)</th>
<th>경사(%이하)</th>
<th>폭(m)</th>
<th>보차도면 높이(cm)</th>
<th>진행방향 경사(%이하)</th>
<th>보도평탄부(m이상)</th>
</tr>
</thead>
<tbody>
<tr>
<td>서울</td>
<td>2.0</td>
<td>5.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.0(1.0)</td>
</tr>
<tr>
<td>도쿄</td>
<td>2.0</td>
<td>5.0(8.0)</td>
<td>-</td>
<td>-</td>
<td>5.0cm(10%</td>
<td>2.0(1.0)</td>
</tr>
<tr>
<td>뉴욕주</td>
<td>0.0</td>
<td>5~8.33</td>
<td>10/10</td>
<td>0.0</td>
<td>8~12%</td>
<td>1.6</td>
</tr>
<tr>
<td>뉴욕시</td>
<td>1.6이하</td>
<td>8.0</td>
<td>-</td>
<td>9.15이하</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>런던</td>
<td>0.0</td>
<td>5.0</td>
<td>-</td>
<td>2.4-3.0</td>
<td>7.5</td>
<td>-</td>
</tr>
</tbody>
</table>

차량진출입부

<table>
<thead>
<tr>
<th>도시</th>
<th>보차도면 높이(cm)</th>
<th>경사(%이하)</th>
<th>폭(m)</th>
<th>보차도면 높이(cm)</th>
<th>진행방향 경사(%이하)</th>
<th>보도평탄부(m이상)</th>
</tr>
</thead>
<tbody>
<tr>
<td>서울</td>
<td>2.0</td>
<td>5.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.0(1.0)</td>
</tr>
<tr>
<td>도쿄</td>
<td>2.0</td>
<td>5.0(8.0)</td>
<td>-</td>
<td>-</td>
<td>5.0cm(10%</td>
<td>2.0(1.0)</td>
</tr>
<tr>
<td>뉴욕주</td>
<td>0.0</td>
<td>5~8.33</td>
<td>10/10</td>
<td>0.0</td>
<td>8~12%</td>
<td>1.6</td>
</tr>
<tr>
<td>뉴욕시</td>
<td>1.6이하</td>
<td>8.0</td>
<td>-</td>
<td>9.15이하</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>런던</td>
<td>0.0</td>
<td>5.0</td>
<td>-</td>
<td>2.4-3.0</td>
<td>7.5</td>
<td>-</td>
</tr>
</tbody>
</table>
제5장
서울시 보도설치기준 개선방향

1. 우리나라 보도설치기준의 문제점
2. 서울시 보도설치기준의 현황 및 문제점
3. 서울시 보도설치기준 개선방향
1. 우리나라 보도설치기준의 문제점

우리나라 보도설치 관련법령은 도로법, 도시 및 국토 관련법, 장애인 관련법 등으로 나눌 수 있다.

가장 기본이 되는 보도설계기준으로 「도로의 구조 및 시설기준에 관한 규칙」이 있지만 지방부 도로의 보도설계에 중점을 두고 있고, 자동차 중심의 도로 구역체계에 보도폭을 연계해 설치하도록 하고 있는 반면, 보행특성에 실질적으로 영향을 주는 요소인 지역 토지이용특성(상업지역 또는 주거지역 등)이 보도설계 시 적극적으로 반영되지 못하고 있다.

도시 및 국토 관련법에서 보도 설계기준으로는 「도시계획시설의 결정-구조 및 설치기준에 관한 규칙」이 있지만 엄격한 보도 설치에 관한 규정만을 제시하고 있을 뿐이며, 「도시계획시설지침」에서는 보도 설치에 대한 원칙을 소개하고 있을 뿐이다.

장애인 관련법에서는 교통약자의 이동편의증진법 시행규칙이 있지만 2006년에 제정되어 아직 세부지침이 마련되지 않은 상태이다.

우리나라 보도설치법규 및 기준
한편 장애인의 이동편의 증진을 배려하는 통합규정으로 2004년 건설교통부가 「보도 설치 및 관리지침」을 제정한 바 있으나, 국도를 중심으로하는 지방부 도로에 중점을 둔 보도 설계기준이라는 한계를 지니고 있다. 또한 장애인과 고령자를 배려하는 보도 포장 시공 및 유지관리에 대한 상세한 기준이 추가적으로 연구되어야 할 필요성이 제기되고 있다.

도시부의 보도에 대한 설계기준으로는 건설교통부가 1988년에 제정한 「도시계획도로의 계획 및 설계기준」이 있으나 20년 동안 개정이 되지 않고 있어, 최근 장애인을 배려하는 보도 설계기준을 제시하지 못하며, 지역의 토지이용특성과 규모를 반영하지 못한다.

따라서 도시부의 보도 설치를 중점으로 하는 설계기준이 새롭게 마련되어야 하며, 그 기준은 토지이용특성을 반영하고, 장애인과 고령자의 접근과 이용을 적극 배려하며, 보도의 설계와 시공, 개보수 및 유지관리에 관한 상세한 기준이어야 한다.
# 2. 서울시 보도설치기준의 현황 및 문제점

현재 서울시의 보도설치기준으로는 1992년에 서울시 도로국에서 발간한 「도로시설물 유지관리지침 및 규정」, 1993년에 발간된 「보도포장설계·공정사항」과 2002년 서울시 복지건강국에서 발간한 「장애인 평의시설 설치매뉴얼」 등이 있다.

「도로시설물 유지관리지침 및 규정」은 관리적 측면에서, 「보도포장설계·공정사항」은 포장 및 시공적 측면에서, 「장애인 평의시설 설치매뉴얼」은 시공보다는 장애인의 이동권 보장적 측면에서 규정하고 있다.

전자의 두 기준은 발간된 지 약 15년이 되어 최신기술과 신재료의 시공설계의 내용을 충분히 반영하지 못하고 있으며, 「장애인 평의시설 설치매뉴얼」은 이해위주로 작성되어 이것을 참고하여 디자인하기에는 세부적인 내용이 충분하지 않은 부분이 있다.

앞서 서울에서 제정한 세 기준을 비롯한 국내의 기존 보도설치기준은 서울과 같은 대도시이자 수도의 위상에 걸맞는 수준 높은 보도를 조성하기 위한 기준으로서는 매우 미흡하다. 따라서 서울시의 보도수준을 획기적으로 증진시키기 위해서는 서울시 자체의 보도설치기준(가칭 서울시 보도설치기준)을 조속히 수립해야할 필요성이 있다.
3. 서울시 보도설치기준 개선방향

보도설치기준 개선방향

새롭게 수립되어야 할 서울시 보도설치기준은 기존에 만들어졌던 세가지 기준의 내용과 설계-시공-관리의 내용을 종합적으로 보완해야하며, 기존의 보도설치기준이 가지는 여러 가지 문제점들을 보완하고, 최신 공법과 재료를 사용한 설치기준 등을 추가하여 새롭게 수립되어야 한다.

또한 서울시 보도설치기준은 국내의 「도로설치 및 관리지침」, 「도시관리계획 수립 지침」, 「교통약자의 이동편의증진법」 등에서 제시하는 제반 요구조건을 충족시키면서 서울시의 위상에 걸맞은 보행선진도시 건설을 위해 외국의 선진사례의 기준들을 적극적으로 반영할 필요가 있다.

기준의 보강과 더불어 서울시의 보도설치기준 상세시공도면을 부록편으로 작성하여 서울시 홈페이지의 도로관리 컨텐츠로 마련하여 공사관계자들이 수정된 기준들을 공사에 바로바로 적용할 수 있도록 해야 한다.

개선이 필요한 사항들

새로운 서울시 보도설치기준을 수립함에 있어 현재의 기준이 가지는 미흡한 점을 보완하고, 수준 높은 서울의 보행환경을 만들 수 있도록 적극적으로 반영될 필요가 있는 중요한 사항들을 요약하면 아래와 같다.

첫째, 충분한 유효보도폭을 확보하고 보도위의 시설물의 난립을 막기 위해서는 보도폭에 관한 기준이 개선되고 보완되어야 한다. 보도폭의 최소기준이 좀 더 강화될 필요가 있고, 시설물의 설치에 따라 추가적으로 확보해야 하는 보도폭에 관한 기준이 좀 더 세분화될 필요가 있다. 또한 미국과 영국, 프랑스에서 볼 수 있는 것처럼 보도 영역을 순수하게 보행공간으로 할애되는 공간과 시설물들이 설치되는 공간으로 구분하여 각 각 확보해야 할 폭의 기준을 제시하고, 보도위에 설치되는 시설물들의 위치와 배치에 관해서도 상세히 규정해 주어야 할 것이다.
둘째, 다른 나라들에 비해 높게 설정되어 있고 보도의 경사를 가파르게 하는 원인이 되기도 하는 보도턱 높이에 관한 기준과 경사도 기준도 시급히 개선해야 한다. 현재 25cm 이하로 규정되어 있는 연석높이 기준을 외국 도시들과 같이 15cm 이하로 개정하고, 외국에 비해 느슨하게 규정되어 있는 경사도 기준도 좀 더 강화할 필요가 있다. 특히 4% 이하로 규정되어 있는 횡단경사 기준은 2% 이하로 강화해야 할 것이다.

셋째, 보도와 횡단보도가 만나는 곳 또는 보도와 이면도로가 교차하는 곳의 턱 낮추기에 관한 기준이 개선과 보완이 필요하다. 특히, 턱 낮추기로 인해 발생하는 경사로 인해 보행자가 낙하하거나 대기하는 보행자들이 불편을 겪지 않도록 평탄부 확보에 관한 규정이 세부적으로 보완되어야 하고, 외국에 비해 다소 느슨하게 규정되어 있는 경사도 기준도 강화될 필요가 있다. 턱 낮추기를 지나치게 넓게 하여 자동차의 보도진입이 가능해지고 이를 막기 위해 설치하는 블라드로 인해 오히려 보행불편이 초래되는 문제를 해결하기 위해서는 턱 낮추기의 폭을 최소화하는 방식을 도입하는 것도 적극적으로 고려할 필요가 있다.

넷째, 보도 위를 가로질러 드나드는 차량의 진출입부 설치에 관한 기준도 크게 보완되고 개선되어야 한다. 차량 위주의 시각에서 차량진출입부의 보도를 제거하는 것은 물론이거나 차도의 높이를 유지하기 위해 보도 높이를 낮추는 방식에서 벗어날 필요가 있다. 보도의 연속성과 평탄성이 유지되도록 차량진출입부의 보도 높이를 유지하고, 포장재료와 평탄부 확보기준, 경사도 기준 등도 선진국 수준으로 개선되어야 할 것이다.

다섯째, 특히 후진적이고 보행자에 대한 배려가 매우 미흡한 횡단보도 설치기준 또한 크게 개선되어야 한다. 자동차의 통행과 소통을 위해 횡단보도 설치를 금지하는 방식으로 되어 있는 현행 도로교통법의 관련기준의 개정이 시급하고, 횡단보도의 설계와 시공에 관해서도 자상하고 구체적인 기준들이 보완되어야 한다. 보행자의 안전한 횡단을 보장하기 위해서는 일정 폭 이상의 도로에는 안전섬과 안전지대를 반드시 설치하도록 규정할 필요가 있고, 보행신호시간에 관한 기준도 장애인과 노약자 등을 배려하는 방향으로 개선되어야 한다.
참고문헌
1. 한국자료

【법규】
도로법, 시행령, 시행규칙
도로교통통법, 시행령, 시행규칙
도로구조령
도로의 구조시설 기준에 관한 규정
도로의 구조시설 기준에 관한 규칙
도로유지보수령
도로의 유지·보수 등에 관한 규정
도시계획시설의 결정·구조 및 설치기준에 관한 규칙
교통약자의 이용권의 증진법, 시행령, 시행규칙
서울특별시 보도상 영업시설물 관리등에 관한 조례, 2003
서울특별시 보행권 확보와 보행환경 개선에 관한 기본조례, 1997
서울특별시 25개 구, 서울특별시 자치구별 보도포장 관리규칙, 1998~1999
장애인노인임산부등의 편의증진 보장에 관한 법률, 시행령, 시행규칙
장애인편의시설 및 설비의 설치기준에 관한 규칙

【기준】
건설교통부, 「도로설계편람」, 1999
건설교통부, 「도로안전시설 설치편람」, 1989
건설교통부, 「도로안전시설 설치 및 관리지침(시설유도시설 편)」, 2002
건설교통부, 「도로안전시설 설치 및 관리지침(장애인 안전시설 편)」, 2000
건설교통부, 「도로안전시설 설치 및 관리지침(차량방호시설 편)」, 2001
건설교통부, 「도로안전시설 설치 및 관리지침 통합편」, 2002
건설교통부, 「도로의 구조시설기준에 관한 규칙 해설 및 지침」, 2000
건설교통부, 「도시계획도로의 계획 및 설계기준」, 1988
건설교통부, 「도시관리계획수립지침」, 2004
건설교통부, 「보도 설치 및 관리지침」, 2004
참고문헌

경찰청, 「교통노면표시 설치·관리 매뉴얼」, 2005
경찰청, 「교통안전표지 설치·관리 매뉴얼」, 2005
서울시, 「도로시설물 유지관리지침 및 규정(토목분야)」, 1992
서울시, 「보도포장설계·공문법」, 1993
서울시, 「서울시 장애인 편의시설 설치 매뉴얼」, 2002

【그 외 자료】

건설교통부, 「도로기본법」, 2003
경기개발연구원, 「경기도 보행환경 개선방안」, 2000
교통개발연구원, 「장애아동의 복지교통 서비스 개선방안」, 2004
교통안전공단, 「고령자 및 장애인 교통안전대책 연구」, 2002
대구경북개발연구원, 「장애인 이동권 확보방안」, 2003.12
도로교통안전관리공단, 「보행자 횡단보도 설치기준에 관한 연구」, 1998
도로교통안전관리공단, 「인간중심의 환경 개선에 관한 연구」, 2001
도로교통안전협회, 「장애인을 위한 안전시설 기준 연구」, 1995
도로교통안전협회, 「외국도로교통법규 번역집 : 영국 프랑스」, 1994
도로교통안전협회, 「외국도로교통법규 번역집 : 일본미국독일」, 1993
도로교통안전협회, 「외국도로교통법규의 비교분석 연구 : 한국일본미국독일」, 1993
서울시, 「도로법 부지관리실무」, 1998
서울시, 「장애인 편의시설 설치 관련 법률 및 설치기준 요약집」, 2006
서울시장개발연구원, 「장애인을 위한 편의시설 설치 관련 법률 및 설치기준 요약집」, 1998
서울시장개발연구원, 「대중교통 지원을 위한 보행환경 개선방안」, 1996
서울시장개발연구원, 「보행자 안전을 위한 도로시설물 개선방안」, 1995
서울시장개발연구원, 「서울시 보행우선지구 제도 운영방안」, 2002
서울시장개발연구원, 「제2차 서울특별시 보행환경 기본계획」, 2005
장애인없는 생활환경 만들기 연구소, 「장애없는 도시 조성 방안」, 2006
한국장애인재활협회, 「장애인 편의시설 설치지침」, 1995
대한도로교통협회, 「장애인 편의시설 설치기준」, 1995

참고문헌 / 109
2. 일본자료

[법규]
고령자 신체장애자등의 공공교통기관이용원활화 촉진에 관한 법률, 시행령, 시행규칙
(高齢者身障害者等の公共交通機関を利用した移動の円滑化の促進に関する法律、
施行令、施行規則)
교통안전시설등 정비사업 추진에 관한 법률
(交通安全施設等整備事業の推進に関する法律)
도로법 (道路法)
도로구조령 (道路構造令)
중점정비지구의 이동원활화를 위한 도로구조에 관한 기준
(重点整備地区における移動円滑化のために必要な道路の構造に関する基準)
【기준】
국토교통성, 「도로의 이동원활화 정비 가이드라인[기초편]」, 2001  
(道路の移動円滑化整備ガイドライン[基礎編])

국토교통성, 「보도에 있어서의 단차 및 구배 등에 관한 기준」, 1999  
(歩道における段差及び勾配等に関する基準)

국토교통성, 「보도의 일반적 구조에 관한 기준」, 2005 개정  
(歩道の一般的構造に関する基準)

도쿄도, 「도쿄도 복지마을 만들기 조례」, 1995  
(東京都福祉のまちづくり条例)

도쿄도, 「도쿄도 복지마을 만들기 조례 시설정비매뉴얼」, 1996/2000  
(東京都福祉のまちづくり条例施設整備マニュアル)

그 외 자료
교통개발연구원, 「일본의 도로행정」, 1998

국토교통성, 「건설기술이전지침 채정조사(도로설계기준) 보고서」, 2003  
(建設技術移転指針策定調査報告書 道路設計基準)

서울시설개발연구원, 「누구라도 알 수 있는 교통의 Barrier-Free(반역서)」, 2006

일본도로협회(강원의 역), 「도로구조점의 해설과 운용」, 2005

한국맹인복지연합회, 「일본 장애인 편의시설 상세표준도」, 1999,

【인터넷사이트】
국토교통성 http://www.mlit.go.jp/  
국토기술연구센터 http://www.jice.or.jp/  
동경도 http://www.metro.tokyo.jp  
동경도 도시정비국 http://www.toshiseibi.metro.tokyo.jp/index.html  
삿포로시 건설국 http://www.city.sapporo.jp/kensetsu/hodo-seko/  
일본법 검색사이트 http://www.houko.com/  
일본 정부 법률 검색사이트(현행법) http://law.e-gov.go.jp  
일본 정부 법률 검색사이트(폐지법) http://hourei.ndl.go.jp/SearchSys
3. 미국자료

【법규】
건축물 및 시설에 대한 ADA 접근성 가이드라인
(ADAAG : ADA Accessibility Guidelines for Buildings and Facilities)
건축장애물법 (ABA : Architectural Barriers Act)
국가 도로망 지정법 (NHS : National Highway System Designation Act)
안전하고, 편리하며, 융통적 효율적인 교통평등법, 2005
(SAFETEA-LU : Safe, Accountable, Flexible, Efficient Transportation Equity Act : A Legacy for Users)
육상교통효율화법 1991
(ISTEA : Intermodal Surface Transportation Efficiency Act)
장애인법 (ADA : Americans with Disabilities Act)
재활법 (RA : Rehabilitation Act)
21세기를 위한 교통평등법
(TEA-21 : Transportation Equity Act for the 21st Century)
28 CFR Part 36 : ADA 접근성 디자인 표준
(ADA Standards for Accessible Design)
36 CFR Part 1190 : 접근성 디자인 최소기준
(Minimum Guidelines And Requirements For Accessible Design)

【기준】
교통엔지니어협회, 「보행자시설의 디자인과 안전」, 1998
(Design and Safety of Pedestrian Facilities)
뉴욕시, 「도로규정(Highway Rules)」, 2006
뉴욕시, 「보도, 연석, 도로의 디자인 계획 및 가이드라인 제출 지침서」
(Instructions for Filing Plans & Guidelines for the Design of Sidewalk, Curbs, Roadways and Other Infrastructure Components)
뉴욕시, 「유니버설 디자인 뉴욕 2」, 2004
(Universal Design New York 2)
뉴욕주, 「도로 디자인 매뉴얼 - 보행자시설 디자인 편」, 2006
(Highway Design Manual, Ch.18 Pedestrian Facility Design)

미국 주 도로교통공무원연합, 「도로와 가로의 기하구조 디자인에 관한 정책」

연방도로국, 「접근성을 고려한 보도와 산책로 디자인(Designing Sidewalks and Trails for Access)」
- Part I: 기존 가이드라인과 사례의 리뷰, 1997
  (Review of Existing Guidelines and Practices)
- Part II: 최선의 시행디자인 가이드(Best Practices Design Guide), 2001

연방도로국, 「보행자시설 이용자 가이드 - 안전한 이동성 제공」, 2002
(Pedestrian Facilities User Guide - Providing Safety Mobility)

연방도로국, 「교통규제장치 표준 매뉴얼」, 2003
(MUTCD : Manual on Uniform Traffic Control Devices)

접근성위원회, 「공공도로의 접근성기준」, 2002/2005
(Draft Guidelines for Accessible Public Rights-of-Way)

접근성위원회, 「접근하기 쉬운 도로 : 디자인 가이드」, 1999
(Accessible Rights-of-Way : A Design Guide)

접근성위원회, 「진정한 커뮤니티 만들기(Building A True Community)」, 2001

접근성위원회, 「표준 연방 접근성 기준」, 1984
(UFAS : Uniform Federal Accessibility Standard)

포틀란드 시, 「포틀란드 보행디자인 가이드」, 1998
(Portland Pedestrian Design Guide)

【그 외 자료】
서울시정개발연구원, 「미국 장애인의시설 가이드라인」, 2000

연방도로국, 「보행자 안전 실행계획 개발책」, 2006
(How to Develop a Pedestrian Safety Action Plan)

한국맹인복지연합회, 「미국 장애인의시설 상세표준도」, 1999
4. 영국자료

【법규】
교통법 (Transport Act), 2000
교통정온화법 (Traffic Calming Act) 1992
도로교통규칙법 (Road Traffic Regulation Act), 1984
도로교통법 (Highway Code)
도로[교통정온화] 규칙 (Highways [Traffic Calming] Regulation), 1993
도로법 (Highway Act), 1980
도로신호규칙과 일반규정(Traffic Signs Regulations and General Directions), 1994
도로[형프] 규칙 (Highways [Road Humps] Regulation), 1990
신설도로 및 가로공사법 (New Roads and Street Works Act), 1991
장애인차별방지법 (Disability Discrimination Act), 1995/2005
통행권법 (Rights of Way Act), 1990
펠리칸 횡단보도 규칙 (Pelican Pedestrian Crossings Regulations), 1987

【기준】
교통부, 「보행자 횡단보도(Pedestrian Crossings)」, 1995
교통부, 「접촉블록 사용 가이드라인」, 1998
(Guidance on the use of tactile paving surfaces)
교통부, 「포괄적인 이동성(Inclusive Mobility)」, 2002/2005
도로공사, 「도로와 교량 디자인 패뉴얼(Design Manual for Roads and Bridge)」
런던 교통국, 「가로경관 가이드라인(Streetscape Guidance)」, 2005
HMSO, 「주거지역 내 도로 및 보도 설계지침(DB 32)」, 1992
Residential Roads and Footpaths : Layout Consideration(Design Bulletin 32)
TRL, 「적용가이드 AG26(version2) : 보도와 자전거도로의 디자인, 시공, 관리 가이드」, 2003

【그 외 자료】
런던교통국, 「보행환경 개선(Improving Walkability)」, 2005
런던교통국, 「경기 쉬운 도시 런던 만들기, 런던 보행계획」, 2004
(Making London a Walkable City : The Walking Plan for London)

【인터넷사이트】
대런던 교통국 http://www.tfl.gov.uk
도로교통법 사이트 http://www.highwaycode.gov.uk
5. 기타지역 자료

베를린, 「도시와 광장의 건설기준에 관한 규칙」
(Handbuch zur Gestaltung von Straßen und Plätzen in Berlin)

파리시, 「장애인의 공공도로 접근성에 관한 기본계획」, 2002
(Schéma directeur d'accessibilité de la voie publique aux personnes handicapées)

파리시, 「공공공간 설치에 대한 헌장」, 2002
(Charte D'aménagement des Espaces Civilisés)

[인터넷사이트]

HAUTS DE SEINE 환경교통
http://environnement-transport.hauts-de-seine.net


파리시 홈페이지 http://www.paris-france.org
부록 1. 서울시 보도설치기준 개선을 위한 정책토론회 요지
부록 2. 각국의 보도설치 관련 법규 및 기초 소개
부록1. 서울시 보도설치기준 개선을 위한 정책토론회 요지

서울시정개발연구원은 「보도설치기준 국제비교 연구」를 위하여 2006년 11월 6일에 서초동 소재 연구원 2층 대회의실에서 「서울시 보도설치기준 개선」이라는 주제로 정책토론회를 개최하였다.

이 정책토론회에서는 서울의 보도의 실태현황과 설계기준을 선진도시와 비교하고, 모든 계층의 사람들이 불편 없이 접근하고 이용할 수 있도록 서울의 보도수준의 개선방에 대하여 논의하였다.

주제발표

- 미국의 보도 설치 범령 및 기준 최재성(서울시립대 교통공학과 교수)
- 국내외 보도설계기준 개선 사례 김용석(건설기술연구원 선임연구원)
- 서울시 보도 조성 실태 및 개선방안 정 석(서울시정개발연구원 연구위원)

토론

- 사외자 김광중(서울대학교 환경대학원 교수)
- 토론자 강병근(건국대학교 건축대학 교수) 권기육(서울시 도로관리과장)
노관섭(건설기술연구원 수석연구원) 민만기(녹색교통 사무국장) 양승우(서울시립대학교 도시공학과 교수) 한상주(동일기술공사 기술연구소장)
- 황단신호 전역시간을 캔저로 표기하는 것은 어린이나 시력이 약한 사람에게 효과적이지 못함. 역삼각형으로 시간을 알리는 것이 보다 효과적임.
- 편의증진법이나 보도관리지침에서 보도턱이 6~12cm로 규정되어 있지만, 오환성 없이 쉽게 보도과 보도턱의 복합적인 문제임. 고원황단보도를 적극 활용하여 보도의 레벨을 유지토록 함.
- 보도의 공간을 가로수나 노상시설을 설치하는 베리어 존과 그린 시설을 설치하지 못하게 하는 베리어프리존으로 엄격히 구분해야 함.
- 보도 포장형식의 다양화를 꾀해야 함. 현재 보도블록은 유도블록과 그 이음새 구분이 잘 안 되고 있음.
- 큰 공동구를 만들어 전제적 인프라 구축에 상당한 비용과 시간이 필요하지만 보도의 일정한 레벨을 유지하여 콘크리트포장은 박스로 하고, 그 전출입을 베리어존으로 하는 것은 단기간에 시행할 수 있음.
- 교통시설 및 주요시설을 연결하는 보행 네트워크와 자동차 네트워크는 분리되어야 함. 보도-자전거도로가 혼용될 경우 자전거의 양방향통행을 금해야 함.

권기욱

- 지하매립시설 설치길이가 50,000km로 상당부분이 보도 아래에 매설되어 있는 상태이므로, 이 중 폐 관광 관광 시 정리하면서 보도문제도 함께 다뤄야 함.
- 보도턱을 낮추면 차가 보도에 올라오고, 이에 대해 불라드를 설치하면 오래 이것이 통행에 지장을 초래해 각 기준의 목표가 성취되는 경우가 발생함.
- 기반시설부담금은 여러 부서에서 활용 가능한 것이나 보자도 정비용으로 적극적으로 사용하는 방법을 강구해야 함.
- 보도설치기준 자체가 미약하며, 일반 도로보수공사 시 설계적 접근이 부재, 일반도로개량공사 시 적용할 수 있는 기준 또는 지침이 요구됨.
- 제대로 된 보도시설이란 보행에 불편이 없도록 장애가 없는 적정폭과 노면의 평탄성을 유지하는 보행로 시설과 대중교통시설 및 다중의 토지이용시설의 접근이 편리한 연결망이 잘 구축되어야 한다는 것임.

- 도시부 보도에 대한 기준으로는 「도시계획도로의 계획 및 설계기준 (1988)」 외에는 제외적으로 사용이 허용할 수 있는 실정임. 각기 저산 현장여건이 다르므로 기준서는 다양한 사례를 케이스 바이 케이스로 제시하면 좋을 것임.

- 최근 히트프로 과속방지턱을 고점형 (히트프로) 환색보도로 잘못 활용되는 사례가 많아 있는데, 보향시설을 제대로 설치하기 위해서는 관련 기준/지침이 우선적으로 요구됨.

- 보도장포 지정물 처리에 대한 꼼꼼한 계획 및 설계가 요구되며, 지속적인 관리가 필요함. 또한 보행자, 자전거, 대중교통, 일반차량으로 우선순위를 두고 20~30년 이후를 생각한 정비정책을 마련해야함.

- 보도기준이 바뀌어도 기존시설과 토지시용의 제약 등으로 25cm 기준의 연석과 15cm 기준의 연석을 사용하는 일정기간 완충기가 필요함.

- 모든 도로에 보도를 설치하는 것을 원칙으로 하고, 보행자의 안전성의 이유인 경우에 예외로 해야 한다고 생각함. 배리어 존이든, 배리어 프리존이든 간에 어떠한 형태로든 지로에서 몇 m까지 지장물이 설치되는 범위를 한정해들 필요가 있음.

- 지하철 환기구를 보도에 설치하는 것은 막아야 함. 린던 사례에서 환기구를 낮춘 것을 보였지만, 보다 적극적으로 인근 건물 옥상으로 덕트가 울라가게 하는 형제도 있음.

- 우리나라는 토지이용계획, 건축계획, 교통계획, 도로계획이 통합이 되지 않아 어떤 경우에는 5m마다 보도가 설정되어서 자량전출입로가 있음. 시가지 간선도로에 의해서 개발할 때 간선도로에서 바로 토지로 진압하는 것을 건축, 도시계획에서 금지, 자량전출입부는 자량이 돌아들어가게 해야 함.

- 기본적으로 보도험이 너무 높은 것은 낮추어야 하고, 불가피하게 높을 경우는 차도와 보도가 만나는 곳의 차도를 높여서 보도레벨을 유지하는 것을 우선으 로 해야 함. 환경에 대한 문제에서는 현재 투수성콘크리트가 제작되고 있으므로 그것을 사용할 수 있을 것임.
- 보도 문제는 서울시 도로관리과만의 문제가 아니라 건축과, 도시디자인과 모두가 함께 고심해야할 문제라고 생각함.

- 우리나라도 보도 폭 기준은 단면기준으로 너무 단순화된 것 같음. 독일은 보도폭을 결정할 때 고려사항을 아주 구체적으로 규정하며, 그 안에서 시설물들을 어떻게 할 것인가를 상세히 기술함.

- 베를린의 「도시와 광장의 건설기준에 관한 규칙」에서는 폭 결정시 다음의 5 가지 유형을 고려함.
  - 공간의 형태(도로, 광장)/ 지역공간구조(도로, 도심, 신도심, 지구중심)
  - 도로폭 / 도시이용 / 교통량(보행량)

- 논의된 제안들을 신도시에 새롭게 적용할 것과 구도시에 적용할 것, 두 가지로 분류해야 함. 신도시는 절 정비에 맞춰있으면서 구도시는 구조, 폭, 다테일 등을 어떻게 바꿀 것인지 고민해야함.

- 연석 경사를 25cm에서 15cm로 낮추게 되면 10cm의 차이가 보도의 경사로 고스란히 넘겨되므로 연석높이를 낮추는 것으로 문제가 해결되지는 않을 것임.

- 한기구, 분전함 등을 보도에 설치하는 것을 적극적으로 막고, 인근지역 개발시 이전하면 인센티브를 주는 방안을 모색하여 기존에 설치된 것들의 이전을 유도하는 것이 필요함.

- 탁나주는 문제는 출입구만 유지하고, 배수문제도 상가 앞 기존의 보도폭을 유지하면 되므로, 김용석 연구원이 발표한 Type2(세미플랫형)을 잘 활용하면 해결이 될 것 같음.

- 지하상가, 지하철역 안에서 나오는 공기를 현재는 모두 보도폭으로 방출하고 있는데, 보행자에게 불쾌감을 주는 것이기 때문에 이것을 막는 방법을 강구해야함.

- 기반시설분담금도 세금으로 걷고 있는데 보행환경 개선의 필요성 확보를 위해서는 제도적으로 예산을 확보할 수 있는 방안이 모색되어야 함.

- 과거에 자동차중심이었지만 지금은 보행자 중심이므로 시내에 있는 보도육교는 완전적으로 다 절거하고 횡단보도를 설치, 보도육교는 불가피한 경우만 설치함.

- 강남 예술의 전당~강북의 공원의 보행전용도로망이 구축되었으면 함.
부록2. 각국의 보도설치 관련 법규 및 기준 소개

■ 한국

도로의구조·시설 기준에관한규칙 (1999/2006)

- 1965년에 최초로 제정된 「도로구조령」이 1990년 「도로의 구조·시설 기준에 관한 규정」으로 명칭을 변경하고 전면 개정되었다가 1999년에 내용을 개선·보완하여 건설교통부령으로 「도로의 구조·시설 기준에 관한 규칙」이 새로 제정됨.

- 본 규칙은 「도로법」 제39조 규정에 의하여 도로를 신설하거나 개량하는 경우 그 도로의 구조 및 시설에 관한 일반적 기술적 기준을 정하는 것을 목적으로 함.

- 보도폭(1.5m/2.25m/3m), 가로시설 추가폭(가로폭 1m, 기타시설 0.5m), 횡단경사(4%이하), 연식높이(25cm이하), 건축한계(2.5m) 등을 규정함.


도로의구조·시설 기준에관한규칙 해설 및 지침 (2000)

- 「도로의 구조·시설기준에 관한 규칙」에 대한 해설, 그 적용방법, 적용상 유의사항 등을 정리하여 관련 실무자들이 쉽게 활용할 수 있도록 2000년 건설교통부에서 발행함.

- 본 지침은 총칙, 도로의 구분과 출입제한, 계획교통량 및 설계속도, 횡단구성, 도로의 선형, 평면교차, 입체교차, 포장 및 교량 등, 도로의 부속시설 등으로 구성됨.

- 보도의 설치 기준 : 보행자 수가 150인/일 이상, 자동차 교통량이 2000대/일 이상일 경우 설치, 양측 설치 원칙. 단, 자동차 교통량이 아주 많거나 학생과 유치원 아동들의 통로가 되는 경우, 국부적으로 보행자가 많은 곳에는 예외적으로 설치

- 보도의 최소유용폭(1.5m, 추가폭-가로폭(1.0m), 방호돌타리(0.5m) 기타(0.5m)), 횡단경사(1/250이하), 연식높이(25cm이하 원칙, 12~20cm 권장), 시설한계(2.5m)

- 횡단보도폭(4m이상, 단 6~8m 도로에서는 2m 가능), 횡단보도 위치 (보도다 경계연장선에서 최소 1m이상/간선도로 5~6m 떨어져 설치)
- 2002년 제정된 ‘국토의 계획 및 이용에 관한 법률’ 제43조의 제2항의 규정에 의한 도시계획시설의 결정·구조 및 설치의 기준과 동법시행령 제2조 제3항 규정에 의한 기본시설의 세부 및 범위에 관한 사항을 규정함.

- 모든 도시계획시설은 ‘편의증진법’을 준수하여 정예인·노인·임산부 등을 위한 각종 편익시설을 우선적으로 설치해야 한다고 규정함. 특별히 언급되지 않은 도로 및 부대시설의 구조·설치에 대해서는 ‘도로의 구조·시설 기준에 관한 규칙’을 따르도록 함.

- 보도 설치와 관련된 규정으로는 황단보도의 구조 및 설치기준, 보행자전용도로의 결정기준, 구조 및 설치기준 등이 있지만 구체적으로 서술되어 있는은 편의.

- 황단보도는 평면황단도로 설치를 원칙으로 하고, 설치도로의 폭에 따라 교통시안전조치 등을 설치하며 점자표시·야광표시 등으로 보행자의 안전을 기할 것을 설치 기준으로 제시하고 있음.


- 1988년 건설부가 마련한 것으로 도시계획법 제2조 1항 1호 나목 규정에 의한 도로계획을 마련함에 있어 따라야 할 순서, 내용, 기준 등의 작업지침 및 계획적행기준을 제시함.

- 보도폭 : 추가폭(가로수 1.5m. 기타시설 0.5m)
  - 대도시 중심업무지역 : 주간선(5.0m), 보조간선/국지(6.0m), 구획(3.0m),
  - 대도시 기타지역 : 주간선/보조간선/국지(3.0m), 구획(1.5m)
  - 중소도시 중심업무지역 : 주간선/보조간선/국지(4.5m), 구획(1.5m)
  - 기타지역 주간선/보조간선/국지(1.5m)

- 중단경사(1/10이하), 횡단경사(1/50이하), 건축한계(2.5m)

- 연식경사로: 폭(2.0m이상/횡단보도 접속부 1.2m이상), 경사(1/100이하)

- 포장재료 : 콘크리트, 인터로킹 블록, 오나멘트 타일, 투수성 재료, 아스콘 콘크리트

- 횡단보도 유효폭 : 보도 유효폭 2배
도시관리계획 수립기준

- 국토의 계획 및 이용에 관한 법률 제25조 내지 제28조 및 제30조의 규정에 의하여 도시관리계획의 수립기준 및 도시관리계획 도서와 이를 보조하는 계획설명서의 작성기준 및 방법을 정함. 사군내 기존 도로의 정비 시 또는 신설되는 도로의 계획시 적용됨.

- 안전하고 배획한 보행환경 조성, 주변여건을 고려한 보도의 계획, 구간, 노선, 공간별로 특성화된 보도의 조성, 함리적인 교차부 구조설계 등을 계획의 기본방침으로 하고 있음.

- 보도의 유 효폭은(1.5m이상, 주/보조간선도로 3m이상, 집산도로 2.25m 이상), 추가폭은 일반적으로 0.5m로 함.

- 보행장애 고려 추가폭 확보 예
  : 우체통 1.0~1.1m, 공중전화박스 1.2m, 유치통 0.9m
  : 지하철 터미널 1.8m, 가로수 0.9~1.2m,
  : 버스정의 및 신문판매대 1.2~2.0m, 가로등 (0.8~1.0m) 등


교통약자의 이동편의증진법 시행 규칙(2006)

- 「교통약자의 이동편의증진법」을 근거로 하며, 도로와 교통수단과 관련한 장애인 편의시설 및 설비의 설치기준에 관한 규칙(94), 장애인·노인·임산부등의 편의증진보건에 관한 법률 시행규칙(98)의 규정을 이하하여 2006년 건설교통부령으로 제정됨.

- 보도의 유 효폭 (2m이상/불가피시 1.2m이상), 교통구역(평지 50m마다, 경사지 30m마다 1.5m×1.5m 수평체)설치, 종단경사(1/18이야, 불가피시 1/12이야), 횡단경사(1/25이야), 보도경계 연석높이(25cm이야), 버스정류장 보도도 높이가(15cm이야)

- 배정 위험이 있는 곳에 덧개 설치(보도와 동일 높이, 격자구멍 또는 통새간격 1cm이야), 보행안전지대 높이(2.1m), 가로수 가지지기(2.5m)

- 횡단보도와 접속부 턱_softصحح 보도높이차(2cm이야), 연석경사로(유 효폭 0.9m이상, 기울기 1/12이야, 옵면경사 1/10이야, 전체 턱_softصحح불가능시 부분경사로 유 효폭 0.9m) 등을 규정함.

이하보도설치 및 관리지침
(2004)

- 건설교통부가 2004년에 제정한 것으로 "도로의 구조-시설기준에 관한 규칙" 제16조에 따라 설치되는 보행자의 통행 안전 및 편리성 확보를 위 한 보도 등 보행자 통행시설의 설치 및 관리에 관한 일반적 기술기준을 규정함.

- 보도의 구조는 "장애인 노인, 임산부등의 편익증진보장에 관한 법률"에 규정된 시설 설치 기준을 준수하며, 양축설치를 원칙으로 함.

- 최소효율(2.0미터/블랙파이 1.5m), 경사진 보도 30m마다 수평범 (1.5m×1.5m) 설치, 경사(중단경사 1/18, 황단경사 1/25이하, 1/50 균안), 연석높이(15~22.5cm/15cm 표준) 등을 규정함.

- 황단보도는 차도에 직접으로, 황단거리를 최소화할 수 있는 위치에 설치 함. 폭은 최소 4.0미터 이상으로 함.

- 포장은 투수성 구조, 블록포장을 원칙으로 하며, 표면은 평탄하고, 미끄 랼에 저항성을 높이어야 하며, 포장면이 평탄성을 유지해야 함.


- 보도설치 및 관리지침
(2004)
도로시설물 유지 관리지침 및 규정
- 토목분야
(1992)

보도포장설계
시공편람
(1993)

- 1992년 서울시 도로국이 국내외 도로 점검 및 유지관리 관련 사례들을 참고로 편집함
- 지하시설물 출입구 설치 시 보도폭 3m, 통행량이 적은 보도 2m, 횡단 경사(1/500이하), 횡단보도 연속낮춤 시 연석높이차(2cm이하)
- 차량진출입부 : 차도 연석높이차(2cm)
  - 통장경사(차도로부터 1m이내 거리 1/10~1/5, 1m이상 1/50)
  - 폭: 부지당 1개 - 8m이하, 2개 - 6m이하
  - 부지의 도로 접부면 길이가 30m이내 일 때 1곳 설치 원칙
- 대형 신축건물 전면 보도 관리(일상화복 절차): 건축부지가 기존 보도면 보다 높은 경우 단자를 없애기 위해 횡단경사 2%를 고지는 것 금지
- 포장대 선정 : 일반 시멘트블록(지중화 미완료시), 대형고압블록(지중화 완료시, 대형건물안전지), 아스팔트콘크리트(지중화완료시, 장속도로 차량 진입시설이 많은 도로), 콘크리트(지중화 완료지, 중단구배가 급한 도로)

- 서울특별시 도로국에서 보도포장 및 유지관리에 대한 자료를 체계적으로 정리하여 관련 공무원들이 활용할 수 있도록 만든 것임.
- 보도에 대한 일반적인 이해, 보도설계, 보도시설 유지관리, 포장, 보도 관련 정의인 편의시설, 보도 포장 및 시공 등에 대한 내용을 다름.
- 보도폭에 대한 규정은 최소폭이 1.5m이고, 도로 등급별 보도폭을 달리 규정함. 보도포장재료 선택 역시 지중화사업 완료여부, 용도지역 및 토지 이용에 따라 달리함.
- 횡단경사(4%미만, 2% 권장), 건축한계(2.5m), 연석높이(20~25cm/방호물타리 사용 시 15cm 적당), 방호물타리 설치 시 보도폭 기준이 0.5m 가산함.
- 보차도 접속부에 대해서는 수평구간(1.5m), 경사(8%), 보차도 높이차 (2cm) 등을 규정함.
- 대형 신축건물 앞의 보도는 기존 보도경사 2% 내외를 유지바도록 함.
서울특별시 및 각 지역의 보도설치 관련 법규 및 기준 소개

1. 보도 설치 관련
   - 보도 유료폭(2m이상), 교행공간(1.5m×1.5m, 평지 50m마다, 정사지 30m마다), 정사(忠단 1/18, 횡단 1/30, 탁백추기 1/180이하), 보자도 높이차(6~12m), 탁백충부 보자도 높이차(2cm), 횡단보도폭(4m이상) 등을 규정함.
   - 매감은 평탄하고 미끄럼지 않아야 하며, 포장재는 응직이지 않도록 고정되어, 0.5cm이상의 높이 차가 발생하지 않도록 함. 이음새의 둥이 벌어지지 않게 하고, 맨홀, 배수구 덮개 등이 보도를 점유해서는 안됨. 배수구 덮개 들개의 간격은 1cm가 되도록 함.
   - 보도의 유료 폭계계부분에 시각장애인을 유도할 수 있는 턱, 경고블록 등을 설치하거나 바닥재의 질감, 색상차이 등을 두어야 함.


2. 2006년 8월 3일 한국토지공사 주최로 개최된 새마나 발표자료로 건국대 학교 장애인 없는 생활환경 만들기 연구소에서 작성함.

- 보도 관련 규정
  - 보도유료폭(1.5~2.4m 이상), 보도 내 맨홀 설치 금지
  - 기존의 선정형블록의 개rollo를 없애고, ‘안전지대+경고띠’ 형태로 전환
  - 보행자존 경계 포장재질을 달리하여 통행로 구분(폭 30~45cm 이내)
  - 전면 경사지(1/180이하)
  - 연석경사지: 폭(0.9m이상), 종단경사(1/120이하), 열면경사(1/100이하)
  - 차량진출입부 보도단지 불어, 보자도 교행구간 바닥마감재의 색상 및 질감 구분
  - 차량진출입부, 횡단보도 진입부 불라도 설치 금지
  - 횡단시설: 생활가로[2차선 이상/지선도로] - 고원식 횡단보도 설치
  - 근린가로[4차선 이상/보조건선도로] - 보행설식 횡단보도

http://www.ablab.co.kr/
보도설치기준 국제비교 연구

도로구조령
[道路構造令]

- 도로법 제 30조 제1항 및 제2항의 규정에 근거해 제정된 것으로 도로 구조의 일반적 기술적 기준을 정함.
- 주로 도로구분, 도로설계기준(수치), 등급에 따른 차선폭 치수, 중앙분리 대 폭 치수, 부도(4m 표준), 길이별 기준, 정차대 기준, 자전거로 기준, 자전거 보행자로 기준 등에 대해 다름.
- 보도폭(2.0m/3.5m 이상 - 시설별 추가폭 : 횡단보도교 3m, 벤치에 지 붕 설치 2m, 가로수 1.5m, 벤지 1m, 기타 0.5m), 시설한계(2.5m), 횡단경사(2%) 등을 정함.
- 횡단보도, 승압지동차 정차대 등에 원활한 통행을 할 수 있도록 필요한 경우 보행자의 체류용으로 제공할 수 있는 부분을 설치하도록 함.


보도의 일반적 구조에 관한 기준
[步道的一般的構造に関する基準]
(1999/2005)

- 국토교통성령으로 1999년에 제정된 「보도에 있어서의 단자 및 구배 등에 관한 기준」이 2005.2.3에 개정되면서 법령을 변경한 것으로 일반적으로 도로구조령을 따름
- 보도의 구조(세밀플랫형식), 보도의 유효폭(2.0m이상), 연석높이(15cm 표준/안전성 요구 시 20cm, 터널, 다리구간 25cm까지)
- 보도의 경사(횡단경사 2%이하/투수성 포장 시 1%이하, 종단경사 5%이하/불가피시 8%이하), 횡단보도 턱날추기(종단경사 5%이하/불가피시 8%, 보도자 높이자 2cm, 수평구간 1.5m)
- 차량이 도로에 인접한 사유지에 출입하기 위한 차량진출입부의 보자도 높 이자(5cm 표준).
- 차량진출입부 설치 재한구역(횡단보도 및 전후 5m 이내/ 터널과 동굴의 전후 각 50m 이내/ 바스정류소/ 노면전자정류장/ 지하도, 지하철의 출 입구 및 횡단보도교의 승강구로부터 5m 이내/ 교량) 등을 규정함

- 고령자, 신체장애 등의 공공교통기관 이용 이동원활화 촉진법 제10조 2항의 규정을 근거하여 2000년에 제정된 것으로, 중점정비지구에서의 이동원활화를 위해 필요한 도로의 구조에 관한 기준을 정함.

- 보도등 임제황단시설, 송합자동차정류소, 노면전차정류장, 자동차주차장, 이동원활화를 위한 안내표지, 시각장애인 유도용 블록, 휴식시설, 조명시설, 방시설설 등을 다름.

- 보도의 유요폭(2.0m이상/통행량이 없을 시 3.5m이상), 노상시설 설치 시 추가폭(육교 3m, 벤치의 지붕설치 2m, 가로수 1.5m, 벤치 1m, 기타 0.5m)

- 정단경사(1%이하, 불가피시 2%이하), 중단경사(5%이하, 불가피시 8%이하), 지정진출입부 평탄부 2m이상 확보, 연석높이(차도면에서 15cm이상), 보자도면 높이차(5cm 표준, 정단보다 부문 2cm 표준), 평탄하고, 미끄러지기 어려운, 투수성 구조로 포장.


- 2001년 기초편이, 2003년 전체편이 발간 되었으며, 「고령자, 신체장애 자동의 공공교통기관이용 이동원활화 촉진법(바리어프리법)」에 근거하여 시점(접이 작성하는 기준)에서 정해지는 중점정비지구에 대해 실시되는 도로특성사업에 대한 구체적인 정비원칙을 기술함.

- 「바리어프리법」과 「중점정비지구에서의 이동원활화를 위한 도로의 구조에 관한 기준」의 도로구조 기준조항에 대한 해설임. 기준에서 구체적으로 제시하지 않았던 부분을 참고기준으로 제시함으로써 통일적으로 적용해야할 수치를 제시함.

- 보도, 임제황단시설, 송합자동차정류소, 노면전차정류장, 자동차주차장, 이동원활화를 위한 그 외의 시설(안내표지, 시각장애자 유도블록, 휴게시설, 조명시설, 방시설설 등)으로 구성됨.

http://www.mlit.go.jp/road/sign/pc/guideline2.html
http://www.jice.or.jp/guideline/index.html
130

도쿄도복지마을 만들기 조례
시설정비매뉴얼
[東京都福祉のまちづくり条例施設整備マニュアル]
(1996/2000)

- 일본의 도로정비 전문기술을 개발도상국에 이전하기 위해 국토교통성과 국제건설
기술협회에서 작성한 기초 자료임. 개발도상국에서 시급이 요구되는 「도로기반
구조」, 「포장」, 「교통안전시설」등 일본의 도로설계기준에 근거하여 기술함.

- 각 요소별 기준의 역사 및 주요 요소의 기준 내용을 소개하며, 현재 통용되는
기준의 간략한 개요 및 상세도 및 기준표를 제시함.

- 보도 관련 내용

  - 보도폭 (2.0m 이상/보행량 많으면 3.5m/블가파시 1.5m)
  - 추가폭 (가로수 1.5m, 기타 노상시설 0.5m)
  - 보도 포장 (아래 모래 4-10cm/자갈 6-10cm/가열 아스팔트 몬 3-4cm)
  - 보도아 눈이 erót (15-25cm), 건축한계 (2.5m)
  - 황단보도 : 길이 (15m 이상 권장), 폭 (4m 표준/보행량 많으면 +1m)

http://www2.fukushihoken.metro.tokyo.jp/machiz/manu.htm

도쿄도복지마을
만들기 조례
시설정비매뉴얼
[東京都福祉のま
ちづくり条例施設
整備マニュアル]
(1996/2000)

- <상상한거리 도교>의 실천을 목표로 도쿄도 1994년에 「상상한거리 도교상
간담회」를 설치, 1995년 「도쿄도 복지마을 만들기 조례」을 제정하고 1996년
에는 그에 대한 시행규칙과 정비 매뉴얼이 적용함.

- 2000년 도쿄도는 개정된 도로구조물과 새로 제정된 베이어 프리법을 반영하여
「도쿄도 복지마을 만들기 조례」, 「도시형규칙」, 「도 정비 매뉴얼」을 개정.

- 정비 기법방향, 정비기준과 그 매뉴, 유도기준, 정비가 어려운 장소에서의 공사
사례 등으로 구성됨.

- 보도폭

  - 일반 보도폭 (2.0m 이상, 1.0m일 때 1.5m 교행 공간 마련)
  - 베니 설치 시 (3.0m/노상시설 설치 시 3.5m)
    - 버스정류장 설치 시 (4.5m/4.5m)
  - 보도 가 경계단자 (15cm 표준, 연속높이 10cm/15cm/20cm)
  - 황단보도 연속높층

  - 보도가 경계자 (2cm), 중단경사 (5.0%이하, 불가능시 8.0%),
    - 원위 평탄부 (1.0m 이상), 보도폭이 넓을 시 아래 평탄부 (1.5m) 설치

http://www2.fukushihoken.metro.tokyo.jp/machiz/manu.htm
- 장애인의 접근성을 위한 최초의 연방기준으로 기존 상황에서의 리모델링, 개조 및 복원뿐만 아니라 신축 건물과 시설물의 설계 및 시공 내용을 포함함.

- 보도와 관련하여 보행로, 보도 포장면, 경사로, 연석경사로, 버스정류장 등에 대한 내용을 다름.


http://www.iccsafe.org/


- ADA AG 1-10절은 사법부와 교통부의 기준 ADA Standards와 내용 면에서는 일치이나, 법적구속력을 갖지 못하고 단지 권고에 불과함.

- 보도와 관련된 규정은 4.3~4.8에 정리됨.
  : 보도의 최소 유요폭 : 0.915m /최대여행단단경사 2%
  : 교행구역 : 61m이내 마다 1.525m×1.525m
  : 시설현계(Clear Head Room) : 2.03m
  : 표면처리 : 고정되고(stable), 견고하며(firm), 미끄럽지 않아야 함.
  : 표면높이변화 : 6mm 이하 (단, 기울기1/2 일 때 -13mm까지 여유)
  : 연석경사로 : 최소유요폭(0.915m), 옥면경사 1/10이하
    종단경사(최대높이변화 15cm 일 때, 1/10~1/12
    7.5cm 일 때, 1/8~1/10)

http://www.access-board.gov/adaag/html/adaag.htm
- 공공 편의시설과 상업시설에 대한 장애인들의 접근성에 관한 가이드라인이므로 ADA에 시범부를 포함한 연방기구에 의해 발행된 규칙들에 의해 건물과 시설의 디자인, 건축, 변경 시 적용됨.


- 보도와 관련된 규정은 4.3~4.8에 정리됨.
  : 보도의 최소 유효폭(0.915m), 최대 이용활경사(2%)
  : 교행구역: 61m이내 마다 1.525m×1.525m
  : 시설한계(Clear Head Room): 2.03m
  : 표면처리: 고정되고(stable), 견고하며(firm), 미끄럽지 않아야 함.
  : 표면높이변화: 6mm 이하(단, 기울기 1/2 이내에서 13mm까지 올림)
  : 연석경사로: 최소유효폭(0.915m), 옆면경사 1/100이하
    중단경사(최대높이변화 15cm일 때, 1/10~1/12
    7.5cm일 때, 1/8~1/10)

http://www.ada.gov/reg3a.html
http://www.ada.gov/adastd94.pdf

- Access Board가 개정하는 ADA(1990), ABA(1968)와 관련하여 다루는 건축물과 시설에 대한 접근 가이드라인을 통합한 것으로 신축과 개축에 대한 가이드라인을 포함함.

- ADA에 의한 공공숙박시설, 상업시설, 주 및 지역정부시설 등을 다루고, ABA에 의해 연방 기금이나 연방 기관에서 차용한 시설에 대한 규칙을 다루고 있음.

- 다른 연방 기관에 의해 발행되는 강화된 기준의 기초로서 제공되며, 2004년 9월부터 적용됨. 2005년 수정됨

- 보도 관련 규정
  - 중단경사(1/200이하), 횡단경사(1/480이하)
  - 연석경사로 : 폭(0.915m),
    중단경사(보도도 높이가 7.5cm - 1/8~1/10, 15cm - 1/10~1/12)

http://www.access-board.gov/ada-aba/final.pdf
- Access Board가 각 주 및 지역정부를 위해 1994년에 제안한 가압장 최종규칙 중 사법부의 접근성 디자인 기준에 재택되지 않은 14절의 내용을 발전시켜 정리한 것임.

- 보도 관련 규정 :
  - 최소유효폭 : 0.915m(단, 길이 3m이내 일 때)
  - 교행공간(1.525m×1.525m, 61m이내 마자)
  - 중단장사(1/20이하, 안드레일 설치 시 1/12이하), 왕단장사(1/50이하)
  - 무정해 높이(2.03m)
  - 포장면 최소높이변화(0.6cm, 단 1/2기울기 1.3cm까지 하용)
  - 변색교차로 : 최소폭(0.915m), 중단장사(1/12, 좁은 보도 1/10), 왕단장사(1/48이하), 수평장(폭 0.915m)
  - 차량진출입부 : 왕단장사(1/48이하), 포장재료 : 콘크리트, 아스팔트, 타일, 돌, 벽돌 등 견고하고 내구성이 있는 잘 미끄러지지 않는 재료

http://www.access-board.gov/prowac/guide/PROWGuide.htm

- 기존의 ADA-ABA 접근성 가이드라인에 보도, 거리 왕단과 같은 관련 보행시설 등을 추가-보충함

- 최종 드래프트 가이드라인은 2001년 1월 공공도로자문위원회가 접근성 위원회에 제출한 보고서 진정한 커뮤니티 만들기(Building A True Community)를 기초로 이어 2002년에 제안됨.

- 2005년 최종 수정되었으며, 아직 입법화되지는 못했으나, FHWA에서는 본 가이드라인을 지역 정부 및 관련기관에서 권고하고 있음.

- 보행자 접근로, 연석경사로, 유도블록, 보행자 왕단, 보행자 신호, 스트리처 페니처, 노상주차, 전화박스 기술규정을 담고 있음.

- 보도 관련 규정 : 최소유효폭 1.2m, 최대하예환장사 2%
  - 교행구역 : 61m이내 마자 1.525m×1.525m
  - 표면처리 : 고정되(stable), 견고하며(firm), 미끄럽지 않아야 함.
  - 연석경사로 : 최소유효폭(1.2m), 명면장사 1/10이하, 중단장사(5~8.3%, 경사로 길이 4.5m 이내)

http://www.access-board.gov/prowac/index.htm
도로와 가로의 기하구조 디자인에 관한 정책

- 미국 주 도로교통 공무원협회에서 1970년 첫 발행 이후 1990년, 1994
  년, 2001년에 개정되었고, 2004년에 5판이 발간됨.
- 'Green Book'이라는 애칭을 가지며, 도로와 가로의 기하구조 설계에 적
  용되는 일반적인 기준을 다루고 있으며, 미국 도로시스템 설계법(1995)
  에서 도로설계기준으로 채택됨.
- 설계지침은 도시지역과 지방지역의 지역구분과 교속화도로, 간선도로, 집
  산도로, 국지도로 등의 등급별 구체적인 도로설계기준을 제시함.

http://www.aashto.org

교통규제장치 표준매뉴얼

- 교통규제장치 표준매뉴얼(MUTCD)은 모든 가로와 도로에 설치하는 교
  통규제장치를 도로 매니저가 설치·유지관리하는데 이용하는 기준을 정의
  함.
- 연방교통국에서 발행하고 있으며, 교통표지판, 노면표시, 도로교통신호,
  교통제어장치, 학교지역에서의 교통제어, 자전거시설을 위한 교통제어 등
  을 다룸.

http://mutcd.fhwa.dot.gov/index.htm
- 접근성을 고려한 보도와 산책로 I은 보도의 접근성과 관련한 법제의 역사항 및 내용을 개관함. 현행의 법제 및 기준과 보도에 대한 접근성에 영향을 끼치는 수많은 요인들에 대해 다릅니다.

- 보도 이용과 관련하여 신체장애자, 어린이, 노인 등의 보행자의 특성을 받아들이고 있음. 현행의 보도 디자인 가이드를 보도 구성 요소별로 다루고 있음.

- 연방교통부의 공식 정책을 반드시 반영하거나 표준, 규정 또는 규칙을 정해도 있지만 보도 디자인의 연방기준 참고도서로 활용되고 있음.

- 보도 관련 규정
  - 최소유호폭(0.915m), 무장애 높이(2.03m)
  - 종단경사(5%이하), 핸드레일 설치 시 8.33%, 횡단경사(2%)
  - 보도면 수직변화 : 6mm(단 경사 1/20이하 시 13mm)
  - 연석경사 : 최소폭(0.915m), 엽면경사(10%이하)
    종단경사(8.33%이하, 10%-15cm, 12.5%-7.5cm)

http://www.fhwa.dot.gov/environment/bikeped/access-1.htm

- 본 가이드라인에서 제시하는 것들을 반드시 지켜져야 하는 것은 아니지만, 일반 디자인 원리는 지켜져야 합니다. 여기에서 언급되는 것들은 기존의 기준을 대체하기 보다는 보충하는 것들임.

- 보도 관련 규정

- 보도 관련 일반 규정
  - 보도폭 : 연석구역(15.2cm이상), 식수대-가로시설구역(가로수 1.22m, 가로시설물 0.61m이상), 보행구역(1.525m이상), 건물 앞 구역(0.76m이상)
  - 무장애 높이(2.03m), 가로수 가지치기(2.03m)
  - 종단경사(5%이하), 횡단경사(2%)
  - 보도면 수직변화 : 6.4mm(단 경사 1/20이하 시 13mm)
  - 연석경사 : 최소폭(0.915m), 엽면경사(10%이하)
    종단경사(8.33%이하, 10%-15cm, 12.5%-7.5cm)

보행자시설의 디자인과 안전성
[Design and Safety of Pedestrian Facilities: A Recommended Practice of the Institute of Transportation Engineers]
(1998)

- 보행자의 안전하고 효율적인 도보를 제공하기 위한 보행자시설의 디자인과 안전에 대한 가이드라인으로 교통 엔지니어 협회(ITE)에서 1998년 발행함.

- 도로 디자인 시 고려사항, 장애를 가진 보행자를 위한 시설, 보도와 산책로, 교통표지판, 교통신호, 횡단보도, 교통섬, 주차규제, 지하도 및 육교 등을 15편의 주제별 묶음 것으로 FHWA의 권장 보행시설 디자인 가이드라임

- 보도 관련 규정
  · 최소효과폭(0.915m), 횡단경사(1/500이하), 중단경사(8%이하)
  · 연속경사로 : 폭(0.915m이상), 옆면 경사(1/100이하)

http://safety.fhwa.dot.gov/ped_bike/docs/designsafety.pdf

뉴욕주 도로 디자인 매뉴얼
- 보행자시설 디자인 편
[Highway Design Manual-ch.18 Pedestrian Facility Design]
(1972/2006)

- 현행의 도로 디자인 기준, 요구사항, 디자인 기법, 정책 등을 제공하는 디자인 매뉴얼로 총 25장으로 구성되며, 정별로 업그레이드됨. 보행자시설 디자인은 2006년 개정판이 현행 최종판임.

- 일반보도
  · 보도폭(1.525m이상/61m마다 1.525m x 1.525m 교행구역)
  · 횡단경사(2%이하)

- 상업지역 보도 기준
  · 전체 보도폭(3.6m이상), 완충지대(1.5~1.8m), 보행공간(1.525m), 건물 앞 공간(0.6m), 시설한계높이(2.0m)

- 주거지역 보도 기준
  · 전체 보도폭(3.6m), 완충지대(0.6~1.8m, 단 잔디일 때는 1.0m이상), 보행공간(1.525m), 시설한계높이(2.0m)

- 5차선이상의 도로나 폭 18.3m이상인 도로에 설치 고려

- 모든 소유주나 건축주가 도로국에 제출해야하는 서류로서 보도, 연석, 도로포장 등의 요구조건을 제시함.

- 일반보도
  · 유요폭(1.525m), 횡단경사(2% 이하)
  · 콘크리트 포장은 원칙으로 함(마찰계수 평탄부(0.6), 경사부(0.8))
  · 평창폭은 6.1m이하 마다 시공, 연석의 줄눈과 일치야게

- 자양진출입부 : 시공폭(최대 9.15m)
  · 노상시설과의 거리 - 나무, 전봇대, 소화전, 가로등[2.135m]
  · 공중전화 부스 : 3.5m
  · 우선통행로 폭 : 주거지역(1.525m), 기타지역(7.625m)

- 탁낮추기 : 보도단단지(1.6cm이하), 진행방향 경사(8%이하)


- 2001년 뉴욕시가 발행한 유니버설 디자인 뉴욕과 한 세트로서 유니버설 디자인을 적용한 실제 건물 및 프로젝트로 보다 많은 베스트 사례와 디자인 체크리스트를 소개함.

- 일반보도
  · 유요폭(0.915m상, 61m마다 1.525m x 1.525m 교행구역 설치)
  · 종단경사(5%이하), 횡단경사(2%이하), 시설한계(2.03m)
  · 수직높이 변화(다른 포장재료간 6.5mm이하)

- 탁낮추기
  · 탁낮추기폭(0.915m이상), 영면경사(1/100이하)
  · 진행방향경사(1/12 ~ 1/8)
  · 보도단 경계단지(13mm이하)

http://safety.fhwa.dot.gov/ped_bike/docs/designsafety.pdf
■ 영국

도로 및 교량 디자인 매뉴얼
[Design Manual for Roads and Bridges (DMRB)]
(1992~현재)

- 도로 및 교량 디자인 매뉴얼은 이전까지 잉글랜드, 스코틀랜드, 웨일즈, 북아일랜드의 감사단에 의해 이전에 발행되었던 많은 개별 시리즈의 출판물로부터 발전시킨 것으로 1992년 영국, 웨일즈, 스코틀랜드, 북아일랜드에 소개됨. 현재는 도로공사(Highway Agency)에서 관할함.

- 모든 연행의 기준, 권고지침, 간선도로의 디자인, 평가, 작업에 관하여 출판된 다른 문서들을 수용하는 포괄적인 매뉴얼을 제공함.

- 보도와 관련 내용으로는 HD39(DMRB 7.2.5), TA57(DMRB 6.3.3), TA90(DMRB 6.3.5) 등이 있다.

http://www.standardsforhighways.co.uk/dmrb/index.htm

HD39/01
포장디자인 및 관리: 보도디자인
[Pavement Design and Maintenance - Footway Design]
(2001)

- DMRB Volume 7, Section 2, Part 5

- 최소보도폭 2m (블가피 시 1.3m)

- 종단경사 1.25~5% 권장, 최대 8%

- 횡단경사 2~3.3% 권장 (블가피 시 최소 1.5%, 최대 7%)

- 보도의 표면은 미끄러지 않아야 함.

- 포장 구조(두께) : 서브 베이스 10cm (공통)
  - 역량절 : 도로노반 4cm, 표면층 2cm
  - 포장재 : 사출모래 3cm,
    - 표면층 진흙 5cm이상 / 콘크리트 블록 6cm이상
  - 포식 : 사출모래나 사출 모르타르 2.5cm,
    - 표면층 포식 깊이 5cm이상

http://www.standardsforhighways.co.uk/dmrb/vol7/section2/hd3901.pdf
TA57/87
도로 기하구조-
도로특징:
도로변 특징
[Road Geometry-

TA90/05
도로 기하구조-
도로변 특징
: 보행로,
자전거도로,
말의 길의 설계
[Road Geometry-
Highway Feature : The Geometric
Design of Pedestrian, Cycle
and Equestrian Routes] (2005)

- DMRB Volume 8, Section 5, Part 1
- 보도폭 1.2m이상
- 연석높이 7.5cm 권장, 10cm를 초과해서는 안됨.
- 횡단보도에서의 연석높은 시
  - 연석높이 1.2cm
  - 연석높은 폭(бел라한, 지브라 횡단보도) 2.4m, 최대 5m
  시간당 보행자 통행량 600명/시 이상 매 125명마다 0.5m씩 추가


- DMRB Volume 6, Section 3, Part 5
- 보도폭
  - 보행자 전용 : 최소폭 2.0m, <2.6m 권장>
  - 보도-자전거 도로 인접 설치 시 :
    - 최소폭 3.0m(보행 1.5m, 자전거 1.5m)
    - 권장폭 5.0m(보행 2.0m, 자전거 3.0m)
- 보행로 무장예 수직높이(Headroom)
  - 건물에서 돌출된 장애물 깊이가 23m 초과 시 : 2.6m
  - 23m 이하 시 : 2.3m
- 연석경사로 종단경사 : 1/20~1/12

보도설치기준 국제비교 연구


- TA52와 TD28를 대신하는 것으로 1995년 교통부에서 책자로 발행함.
- 주로 보행자 환경에 관한 계획, 설계 및 설치, 특히 신호제어를 받는 횡단보도(별리칸, 퍼핀, 또는 투칸)의 디자인에 대해 다름.
- 도로폭이 15미터인 도로에서는 반드시 굴절횡단보도(staggered layout)를 설치해야하고, 도로폭이 11미터부터 굴절횡단보도를 권장함.
- 횡단보도 기준
  - 최소폭(2.0m, 단 투개 4.0m), 제브라 최대폭 10.1m
  - 연식경사로 경사 1/20(블거피시 1/12)
  - 연식심 내비 : 최소 0.5m
  - 안전심 최소폭 1.2m


LTN2/04 보행자 및 자전거 시설기준

- 1986년에 작성된 사이클리스트와 보행자의 혼용(LTN2/86)을 대신하는 것으로 2004년 작성됨.
- 자전거-보행자도로의 분리를 보행자나 자전거의 통행량이 많은 때, 장애인 시설 이용자가 많은 때, 보도폭이 충분히 넓은 때 자전거도로와 보행 보도를 분리함.
- 보도의 처음과 끝부분, 보도와 횡단보도, 보도와 도로의 접속부 등에 적절한 안내 점자블록을 설치해야하며 이는 점자 포장 가이드라인(1998)을 따라야 함.
- 보도폭 : 최소폭 - 보도(1.5m) 블거리시 1.0m, 단 그 길이가 6m미만
  권장폭 - 보도(2m), 자전거도로(3m)
- 보도와 자전거도로를 분리 시 높이차를 두거나, 연식이나 벽을 설치하여 경계를 표시함. 이 때 연식이나 벽에 대한 추가폭을 고려해야 함. 자전거도로와 보도와의 경계 높이차는 5cm가 적당함.


- 주거지역의 도로와 보도의 레이아웃을 디자인 할 때의 고려사항, 도로와 보도의 전래적인 레이아웃, 교차, 교행, 차도, 도로 가장자리, 주차공간 등의 설계기준을 다름.

- 보도관련 내용
  - 최소 유 효폭 : 2.0m(50가구이상 시 1.35m)
  - 보차도 혼용 시 최소보도폭 : 3m(각각 1.5m)
  - 보행로 무장매 수직높이(Headroom) : 2.6m
  - 건물에서 돌출된 장애물 깊이가 10m 이하 : 2.3m
  - 연석경사로 경사 : 8%이하, 5%이하 권장

- 점자포장에 대한 전반적인 디자인 및 설치 가이드라인으로 정재된 위험에 대해 경고하는 점자블록의 설치디자인에 대한 추가적인 내용과 에메니티 증대를 위한 정보를 제공함.

- 점자블록은 주변상황을 고려하여 설치해야 함. 본 가이드라인에서 교차지점(횡단보도-직각, 예각, 교통섬)에서의 점자포장의 설치 및 관리기준, 선형블록의 설치 및 관리기준, 가로 안쪽의 승강장의 점자블록 설치, 보행자-차전가도로의 상황별 점자블록 설치기준에 대해 다름.

- 연석경사로
  - 종단경사(5%, 최대 8%), 자도-연석높이차 : 6mm이하
  - 신호제어 횡단보도 점자 포장 깊이 : 통행방향과 횡단보도 방향 일치 시(1.2m), 그 외(0.8m)

- 안전지대 깊이 2미이하(연석너비 포함)

- 차량진출입부 연석높이 높이 2.5cm이상

모두의 이동성

【Inclusive Mobility】

- 법적 강제력을 갖지는 못하며, DDA를 전적으로 따르는 것을 아니지만, 관리기관에서 각각의 상황에 일반적으로 적용할 수 있도록 교통부가 발행한 최신의 시행가이드라임.

- 거동이 불편한 사람, 시각장애인을 가진 사람들에 대한 기본적인 최소 활동폭 등의 특성을 제시함.

- 보도, 보행자 지역, 접지블록의 설치 레이아웃, 주차, 버스정류장, 택시 주차열, 교통관련건물로의 접근성, 교통관련건물 안에서의 접근성, 표지판, 가로등 등에 대한 디자인 지침 안내함.

- 보도 관련 내용
  - 최소폭: 보도(1.5m/불가피시 1.0m, 단, 그 깊이가 6m미만)
    버스정류장(3.0m), 상가(3.5~4.5m)/무장애 높이(2.3m)
  - 중단경사(1/200야, 단 경사거리 2m미만 시 1/12까지 여용)
  - 연석낮춤: 중단경사(1/12야), 횡단보도 최소 연석낮춤폭(2.4m)


가로경관
가이드라인

【Streetscape Guidance】
(2005)

- 2005년 발간된 가로경관 가이드라인은 TLRN(Transport for London Road Network)가 가로경관 개선 및 유지·관리함에 있어 준수할 원칙을 제시함.

- 가로경관 요소별, 지역별 디자인 지침과 가로경관의 주제별 상세도, 스트리트 퍼니처, 교통표지판, 신호등, CCTV, 가로수, 자전거와 오토바이 주차시설, 버스정류장, 택시주차열 등 보도에 설치되는 시설물에 대한 기준을 제시하고 있음.

- 보도 관련 내용
  - 좌소유 효폭: 1.0m이상
  - 중단경사 5~8%(5%이하 권장, 경사길이 2m미만 시 8%)
  - 연석높이: 12.5cm가 일반적, 버스정류장 14cm
  - 연석낮춤: 중단경사 5%이하 권장(경사길이 2m미만 시 8%)
  - 차량진출입부: 중단경사 8.3%이하, 연석-차도 높이차 2.5cm
  - 보도마감: 견고하고 평평할 것, 전천후에도 미끄럼을 없을 것
  - 반사물질은 피함
  - 접차포장 깊이: 교차점 진행방향 시 1.2m, 그 외 0.8m
