목차

01 연구 개요	2
1_연구의 배경 및 목적	2
2_연구의 내용 및 방법	4
02 서울 도시고속도로 병목구간 도출	8
1_서울 도시고속도로 운영 현황	8
2_도시고속도로의 구간별 속도 변화 분석	11 mile
3_도로별 병목구간 선정	11 16 —————————————————————————————————
03 서울 도시고속도로 병목구간 특성 분석	18
1_데이터 및 분석 방법	18
2_혼잡 발생 시점 교통량 및 속도 분포	21
3_교통량에 따른 교통혼잡 발생확률	25
4_서울 도시고속도로 병목구간 유형 분류	27
04 드론을 이용한 도시고속도로 데이터 수집	32
1_서울 도시고속도로 드론 영상 촬영	32
2_수집 영상 분석 및 차량 주행궤적 도출	39
3_영상 분석 결과	44
05 드론 영상 기반의 자율협력주행시대 교통 데이터 활용방안—	50
1_차량 궤적 기반 도시고속도로 교통 상태 추정	50
2_도시고속도로 혼잡 발생 및 전이 과정	55
3 도시고속도로 혼잡 발생 워인 분석	64

4_도시고속도로 혼잡 유발지표 개발	67
5_서울 운전자 특성과 도시고속도로 용량	80
06 요약 및 정책 제언	84
참고문헌	87
Abstract	89

표 목차

[丑	1-1]	자율협력주행시대의 새로운 교통 데이터의 특징	4
[丑	2-1]	서울 도시고속도로 현황	8
[丑	2-2]	최저 통행속도 상위 20개 구간 현황(평일 기준)	10
[丑	2-3]	경부고속도로(남향) 구간별 속도 및 기하구조	12
[丑	2-4]	경부고속도로(북향) 구간별 속도 및 기하구조	12
[丑	2-5]	분당수서로(남향) 구간별 속도 및 기하구조	13
[丑	2-6]	분당수서로(북향) 구간별 속도 및 기하구조	14
[丑	2-7]	문당수서로(남양) 구간별 속도 및 기하구조 분당수서로(북향) 구간별 속도 및 기하구조 올림픽대로 구간별 속도 변화 강변북로 구간별 속도 변화	15
[丑	2-8]	강변북로 구간별 속도 변화	15
[丑	3-1]	기존의 생존분석(Lifetime)과 본 연구의 혼잡 유발교통량(Capacity) 개념 비교	교 20
[丑	3-2]	혼잡 발생 시점의 교통량 속도 분포 그래프	23
[丑	3-3]	혼잡 발생 시점의 교통량 분포	24
[丑	3-4]	혼잡 발생 시점의 속도 분포	24
[丑	3-5]	교통량에 따른 혼잡 발생확률	26
[丑	3-6]	로그-순위 검정 결과 구간별 P-value 비교	27
[丑	3-7]	동일한 특성의 집단	28
[丑	3-8]	서로 다른 특징의 집단	29
[丑	4-1]	드론 촬영 구간 선정을 위한 사전 검토 사항	33
[丑	4-2]	드론 영상 분석 대상 선정	35
[丑	4-3]	이음 영상 편집을 위한 위치 보정	36
[丑	4-4]	이음 영상 작업 과정	37
[丑	4-5]	완성된 경부고속도로 반포IC 이음 영상 화면	38
ſĦ	4-61	완성된 분당수서로 탄천 1교 이음 영상 화면	38

[표 4-7] 경부고속도로 반포IC 이음 영상 분석 결과	40
[표 4-8] 분당수서로 탄천1교 이음 영상 분석 결과	41
[표 4-9] 차량 궤적 데이터	43
[표 4-10] 수집영상 차량 궤적 결과 요약	45

그림 목차

[그림	1-1]	연구의 배경 및 목적	4
[그림	1-2]	연구의 내용 및 방법	5
[그림	2-1]	서울시 도시고속도로 노선별 교통량 및 속도(평일)	9
[그림	2-2]	2020년 서울 도시고속도로 시간대별 상습 정체 구간	10
[그림	2-3]	도시고속도로 구간의 속도 변화 분석	11
[그림	2-4]	선정한 주요 병목 지점	16
[그림	3-1]	병목구간 특징 도출을 위한 연구 방법	18
[그림	3-2]	CWT를 활용한 혼잡 발생 시점 검지 예시	22
[그림	4-1]	선성한 수요 명목 시점 병목구간 특징 도출을 위한 연구 방법 CWT를 활용한 혼잡 발생 시점 검지 예시 드론 촬영 이음 영상 제작 프로세스 자동 영상 검출 과정	35
[그림	4-2]	자동 영상 검출 과정	39
[그림	4-3]	수동 보정 및 검증 작업 예시	40
[그림	4-4]	경부고속도로(남향) 반포IC 차량 궤적 그래프	46
[그림	4-5]	분당수서로(북향) 탄천1교 차량 궤적 그래프	47
[그림	5-1]	경부고속도로 교통 상태 추정	52
[그림	5-2]	분당수서로 교통 상태 추정	53
[그림	5-3]	차량 궤적 데이터와 검지기 데이터 비교	55
[그림	5-4]	경부고속도로 교통류 기본도	56
[그림	5-5]	분당수서로 교통류 기본도	57
[그림	5-6]	경부고속도로와 분당수서로 통합 교통류 기본도	57
[그림	5-7]	Phase 1	59
[그림	5-8]	Phase 2	60
[그림	5-9]	혼잡 발생에 따른 교통량 분포 비교	61
[그림	5-10	Phase 3	62

[그림	5-11]	혼잡의 심화 (분당수서로 사례)	62
[그림	5-12]	고속도로 혼잡 발생 과정 종합	64
[그림	5-13]	혼잡 발생의 유형별 사례	65
[그림	5-14]	혼잡 해소의 유형별 사례	67
[그림	5-15]	Newell의 차량 추종 모형	68
[그림	5-16]	시·공간적 '지체'의 정의 개념도	70
[그림	5-17]	공간적 지체(Residual)	71
[그림	5-18]	시간적 지체 (Delay)	73
[그림	5-19]	차로변경으로 인해 발생 가능한 4가지 상황	74
[그림	5-20]	개별차량 혼잡 발생 사례 분석	76
[그림	5-21]	개별차량 혼잡 해소 사례 분석	77
[그림	5-22]	경부고속도로 1차로 혼잡지표 분석	78
[그림	5-23]	경부고속도로 1차로 혼잡지표와 속도의 관계	78
[그림	5-24]	분당수서로 2차로 혼잡지표 분석	79
[그림	5-25]	분당수서로 2차로 혼잡지표 분석 분당수서로 2차로 혼잡지표와 속도의 관계 도로별 유전자 반응시간 분포	80
[그림	5-26]	도로별 운전자 반응시간 분포	81