목차

01	연구개요	2
	1_연구배경 및 목적	2
	2_연구내용 및 방법	4
02	관련 사례 및 연구 검토	6
	1_도시철도 이용행태 분석 및 적용 사례	6
	2_국내 도시철도 모빌리티 분석 연구	18
03	상시분석체계 구축 및 활용 방안	26
	1_도시철도 모빌리티 특성	26
	2_상시분석체계 구축 방안	28
	3_상시분석체계 활용 방안	40
	4_결론	46
참고	고문헌	47
Ab	stract	48

표목차

[표 1-1] 서울시 수단분담률(2017년)	2
[표 1-2] 서울시 대중교통 수단분담률(2016년)	3
[표 2-1] 승강장 내 승객 통행 구분	18
[표 2-2] 고속터미널역 승강장 면적 및 혼잡도	19
[표 3-1] 소유기관별 교통카드데이터 장점	26
[표 3-2] 교통카드 데이터 구조 예시	27
[표 3-3] 승강장에서 통행 속성	28
[표 3-4] 동적 통행배정모형(노선 통행량)	30
[표 3-5] 특정 승강장 통과 수요 산출 모형(승강장 통행량)	31
[표 3-6] 열차스케줄을 반영한 동적 통행배정모형 개념도	32
[표 3-7] 운행 중인 급행서비스	43

그림 목차

[그림 2-1] 시범사업 대상 역사	7
[그림 2-2] 와이파이 접속 데이터 구성	8
[그림 2-3] Oxford Circus역의 시간대별 혼잡도	9
[그림 2-4] 기존에 제공되는 도시철도 정보	10
[그림 2-5] 추가 제공되는 도시철도 정보	11
[그림 2-6] 첨두 시간대 열차 혼잡도 정보	12
[그림 2-7] 환승 이동 행태 정보	13
[그림 2-5] 추가 제공되는 도시철도 정보 [그림 2-6] 첨두 시간대 열차 혼잡도 정보 [그림 2-7] 환승 이동 행태 정보 [그림 2-8] 열차 지연으로 인한 승객 이동 행태	14
[그림 2-9] 역사 내 혼잡 정보	15
[그림 2-10] 동일 출발역-도착역 간 이동의 다양한 환승 노선	16
[그림 2-11] 고속터미널역 통행 세부 현황	18
[그림 2-12] 고속터미널역 9호선 승강장별 통행량 시계열	19
[그림 2-13] 최대 통행량과 실용대기 면적에 따른 승강장 혼잡도	19
[그림 2-14] 역삼역 승강장 대기인원 추정 결과	20
[그림 2-15] 강남역 플랫폼-게이트 이동시간 분포	21
[그림 2-16] 신림역-강남역 이동 승객 분포	21
[그림 2-17] 신림역-가락시장역 통행 추적	22
[그림 2-18] 가양역-여의도역 급행·완행 통행 조합	23
[그림 2-19] 역사환승량 산정 절차	23
[그림 2-20] 교대역 역사 내 보행 유형별 구분	24
[그림 3-1] 도시철도 모빌리티 구성	27
[그림 3-2] 상대식 승강장에서 통행 흐름	29

[그림	3-3] 섬식 승강장에서 통행 흐름	29
[그림	3-4] Rolling Horizon 방법론의 개념	33
[그림	3-5] Selected Station/Line Analysis의 개념	33
[그림	3-6] 2호선 신정네거리역 승강장 혼잡도 측정 장치 설치 위치 및 감지선	34
[그림	3-7] 객실 혼잡도 시스템 검증을 위한 승객 수 측정	34
[그림	3-8] 혼잡도 모니터링 레이더 시스템	35
[그림	3-9] IR-UWB 혼잡도 측정 알고리즘 순서도	35
[그림	3-10] 강남역 환승통로에 설치된 혼잡도 측정 센서	35
[그림	3-11] 2호선 신정네거리역 혼잡도 측정 센서	36
[그림	3-12] 승강장 행선안내게시기 열차 및 객실 혼잡도 표출	36
[그림	3-13] 대합실 행선안내게시기 승강장 혼잡도 표출	36
[그림	3-14] 게이트 제어시스템 알고리즘	37
[그림	3-15] 혼잡도 측정·제어·정보 제공 시스템	38
[그림	3-16] 열차운행 스케줄 시뮬레이션 프로그램	38
[그림	3-15] 혼잡도 측정·제어·정보 제공 시스템 3-16] 열차운행 스케줄 시뮬레이션 프로그램 3-17] 도시철도 상시 모니터링 체계 3-18] 상시분석체계 활용 방안	39
[그림	3-18] 상시분석체계 활용 방안	40
[그림	3-19] 기상조건에 따른 도시철도 혼잡도 영향 분석	41
[그림	3-20] 스페인 마드리드 도시철도 링크 단절에 따른 파급효과 분석	42
[그림	3-21] 수도권통합요금제 운영현황	42
[그림	3-22] 수도권 급행열차 서비스 확대 계획	44
[그림	3-23] 6호선 급행화 추진에 따른 분석(안)	45
[그림	3-24] 디지털 트윈에서 상시분석체계의 역할	46