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I. Introduction 

 

 Distinctive characteristics of public goods(services)1) as Samuelsonian pure 
public goods, are nonrivalry and nonexcludability. Most public services, however, are 
not pure public in nature, that is they can be excludable and congestible.  
 Generally, congestion in public services refers to the decreasing effective 
service levels, holding public sector resources fixed, as the size of the consumers 
increases. Since welfare of the users is highly diminished by congestion effects such as 
crowding and waiting time, incorporation of this property in determining the optimal 
facility size and location is very important. However, most studies on congestion effects 
have concerned with optimal pricing or taxing of the services based on the public sector 
economics (for example, Hochman(1982), Haveman et al(1977), Brueckner(1981), 
Craig(1987)). Little attention has been placed on the optimal size and locations of 
facilities with congestion effects (see, Schuler et al. (1976)). 
 This paper tries to develop a model for the optimal facility locations with both 
congestion effects and transportation costs on a network. Section 2 is a review of some 
of the literature on the theory of optimal provision of (congestible) public services. In 
section 3.1, a marginal congestion cost is derived through a traditional partial 
equilibrium utility function. In section 3.2, a Hakimi-type m-median model is modified 
to get a welfare loss function due to travel distances on a network. In section 4, two 
previous formulations are combined and a model of optimal locations of public facilities, 
with both congestion and travel costs, on a network is presented. The last section 
includes a summary and limitations of this paper.  

 

 

II. Congestion in public services 



 

 In the partial equilibrium analysis of a pure public good, the optimal quantity of  
the public good is found at the intersection point of the total demand curve2) and the 
supply curve. In other words, pure public good equilibrium is established where the 
total willingness to pay for the public good is equal to the price at which a producer is 
willing to supply that level of output(Brown and Jackson, 1978). In the general 
equilibrium analysis of a pure public good, the optimal provision requires that the sum 
of consumers' marginal rates of substitution between any public good and private good 
equal their marginal rates of transformation in production. Formally state,  SUM from 

{ i }  MRSi = MRT , where i is a consumer (Samuelson 1955, cited in Herber 1979). 
However, the optimal provision of (partially) congestible public services has received 
far less attention, even though most public services are subject to congestion effects.  
 Hochman(1982) classified impure local public goods into two types: 
congestible and pollutable. Focused on the first, a version of Samuelson's rule as to the 
optimal allocation of pure public goods is extended on the one hand to locally dispersed 
public goods and on the other hand to congestible local public goods. Two corrective 
Pigovian taxes3) are identified: congestion tolls levied on households, and a residential 
land tax. These two taxes cover total government expenditure on the local public goods. 
While, Haveman et al.(1977) analyzed congestion as a consumption externality in a 
model in which the market demand of consumers of facility services reflects 
heterogeneous tastes for congestion avoidance. The individual willingness to pay is a 
function of the aggregate level of facility use. The analysis demonstrated that the Pareto 
optimal toll for facility use depends on the pattern by which congestion cost is 
distributed among facility users. 
 Brueckner(1981) estimated the strength of congestion effects for fire protection 
services through a community's fire insurance rating. The empirical results show that 
the congestion properties of fire protection are much like those of a pure public good. In 
addition, a new notion of returns to scale for public goods is introduced and relevant 
parameters for the fire protection case are estimated. 
 Bergstrom and Goodman(1973) and Borcherding and Deacon(1972) attempted 
to estimate the strength of congestion for various public goods. Both papers postulated 
that the consumption level of a public good equals Xnr,   where X is a measure of public 
output, n is the size of the consuming group, and r is the congestion parameter(r≤0). 
Both papers further assumed that as a result of majority voting process, public good 
consumption in a community is set at the level of desired by the median income voter. 
A public good demand function was then used to derive an estimating equation relating 
public expenditure to a community's median income level, population, and other 
variables. The congestion parameter r was estimated by a nonlinear function of the 



regression coefficients from this equation(cited in Brueckner, 1981, 45-6).  
 Schuler and Holahan(1976) developed a maximum covering location model to 
find out an optimal size and spacing of public facilities under the assumption of 
continuous space and uniform population density. After classifying various public 
services with their congestibility, congestion effects were included in the model as a 
function of the size of the population served. The analysis suggests the potential for 
multiple local optimum combinations of service area and facility size when the 
congestion effects are considered. 
 In the use of impure public services, the welfare of user may depend positively 
upon the quantity of services consumed and negatively on 'congestion', where 
congestion is a function of the size of the facility4) and the total use of it by all 
users(Oakland, 1972). Given a fixed facility size, the effective service level per capita 
(W) is a concave function of number of users (n) of the facility, in other words, 
dW/dn<0 and d2W/dn2<0.5) This property can also be applied in the spatial friction case 
due to the distances between demand and supply nodes.    
 

 

III. Congestion Effects and Travel Costs in the Public Facility Location 
 

 Assume that there is only one kind of congestible public facilities on a network. 
People consume the services that are provided from the facilities to maximize their 
welfare. The actual service levels will be diminished due to the additional use of the 
services. Given n nodes on a network that can be demand (Xi) or supply node (Xj), 
number of facilities provided on the network is limited because of public sector resource 
limitation(or budget constraint). The total number of facilities to be allocated (m) is less 
than the number of nodes (n) (m<n). Some nodes should be allocated to a supply node 
to meet their demands. Users in any node (except, supply nodes) should travel to use the 
services from the allocated facility in a supply node resulting welfare loss due to travel 
costs. Consumers can use the services with variable intensities. Let Y(endogenous) be 
the number of visits of each user (per week) and ai be the number of users in the ith 
node. 

 

  3.1 Marginal Congestion Cost 

 

 From the traditional utility function, marginal congestion cost can be derived. 



Within the partial equilibrium analysis, for simplicity, the social welfare can be 
expressed as a function of size of the facility, number of visits, and number of users for 
the services. 

 

              W(S, aiY, Y)     (1) 

 

where, W is social welfare, S is the size of the public facility(endogenous). Users 
benefit from the size of the facility and number of visits, but suffer a loss of welfare due 
to extra total use. Therefore, it is assumed that  PARTIAL W/ PARTIAL S>0, PARTIAL W/ 

PARTIAL aiY<0, and PARTIAL W/ PARTIAL Y>0.  
 Assume that total costs for providing the services consist of facility costs and 
operation costs. Then the production capacity of the public sector for the services is 
given by the function:6)   
    
            F(mS, aiY) = B    (2) 
where, B is budget constraint, aiY is total use.    

 

 The optimal size of the facilities and number of visits are obtained by 
maximizing social welfare (1), subject to the budget constraint (2). Reformulating the 
previous functions as a Lagrangian function, the optimization model is,  

 

            Z = W(S, aiY, Y) + λ(B-F(mS, aiY))    (3) 

 

where, λ is the Lagrangian multiplier.  

 

 The first order conditions reduce to the following simultaneous equations: 

 

            Zλ = B - F(mS, aiY) = 0                 (4) 

            Zs = Ws - λmFs = 0                     (5) 

            ZaiY = WaiY - λFaiY = 0                   (6) 

            ZY = WY - λaiFY = 0                     (7) 

 



From the equation (5) and (6),  

 

            Ws / mFs = WaiY / FaiY = λ             (8) 

 

where Ws= PARTIAL W/ PARTIAL S, Fs= PARTIAL F/ PARTIAL S, Waiy= PARTIAL W/ 

PARTIAL aiY, and Faiy= PARTIAL F/ PARTIAL aiY.  
Since  PARTIAL W/ PARTIAL aiY<0,  the sign of WaiY is negative. 
Equation (8) implies that the marginal congestion cost(welfare loss) imposed on 
existing users by the addition of one more user must equal the marginal social welfare 
increase (in terms of the marginal cost by one unit service increase). The optimal 
facility size and number of visits per user can also be obtained from the simultaneous 
equations (5), (6) and (7). From the equation (8), marginal congestion cost function is, 

 

           WaiY = (Ws*FaiY) / mFs                   (9) 

 

  3.2 Travel Costs Minimizing Function 

 

    The allocation of demands to facilities greatly depend on the number and location 
of facilities. Given the budget constraint, number of facilities is fixed. Location of 
facilities determine the optimal allocation of demands. Following the multiple facilities 
minisum criteria on a network, travel cost minimization function can be stated as 
follows:  

 

            SUM from { i } SUM from { j }     aiYβdijxij               

(10) 

where dij is shortest distance7) (miles) from node i to node j (supply node), β is per 

mile welfare loss index, xij = 0 if node i does not assign to node j, 1 if node i does assign 
to node j 

 In order to convert a travel cost function to the welfare diminution function, β 

and Y are included. Each node should be fully assigned to meet each node's demand,  

 

            SUM from { j }   xij=1           i = 1,2,3, ................, n    (11)      

 



To avoid mutual assignment or relay assignment between the nodes: 

 

           xjj≥xij
8)                                 (12) 

                            i = 1,2,3, ................., n 
                            j = 1,2,3, ................., n 

                            i ≠ j 

 

Number of facilities is the same with number of nodes which assign to themselves,  

 

            SUM from { i }    xii = m                               (13)  

 

The objective of this function is to measure a loss of social welfare due to travel 
distances. In this formulation, it is assumed that: 
 > Users of a node are concentrated to the center of the node. Thus if node i is 

the site of a facility location, the users of node i travel zero miles to the 
facility.       

 > Each node must be allocated a supply node to satisfy the demand of node. 
Each node will be assigned to the nearest facility, which may or may not be 
located within the node.  

 > Facilities cannot be partially provided to serve a fraction of a node's users. 
That is facilities should be fully built or not at all. 

 

 



IV. Optimal Public Facility Location Model with Congestion Effects 
and Travel Costs 

 

 Using the previous formulations in section III, optimal public facility location 
and demands allocation function with both congestion costs and travel costs is reduced: 

 

            Min Z = C + T                           (14) 

 

where C is total congestion costs, and T is total travel costs. From equation (9) and (10), 
objective function9) to be minimized is: 

 

            Min Z =  SUM from { i }  SUM from { j }    -WaiYaixij+ SUM from { i }  

SUM from { j }    aiYβdijxij      (15) 

            s. t      WaiY=(Ws*FaiY)/mFS    

                      SUM from { j }   xij = 1        i = 1,2,3, ................., n 

                      xjj≥xij          i = 1,2,3, ................., n  

                                      j = 1,2,3, ................., n 

                                      i ≠ j 

                       SUM from { i }    xii = m 

 

 By minimizing the objective function with given constraints and the 
nonnegativity constraints, we may get the optimal locations of facilities on the network. 
For this integer programming, enumeration method or heuristic approaches such as 
Maranzana's node partitioning, myopic approach, and node substitution can be used.10) 
There might arise fractional assignments solutions. In order to find the optimal integer 
solution, branch and bound method can be applied. 

 

 



V. Concluding Remarks 
   
 Despite the importance of congestion effects on welfare of public facility users, 
most public facility location-allocation modeling have neglected the congestion effects. 
This paper is an attempt to develop a model to consider congestion effects as well as 
traveling costs, incorporating a traditional utility function and a travel cost minimization 
programming. This formulation may be applied in location of public clinics and public 
social service agencies such as district offices of the Department of Public Social 
Services where public resources may be limited and congestion effects could be 
significant. 
 Since my effort is much directed to conceptual model building, the future 
researches for operation of the model should answer these following limitations: 
 > How can we effectively measure individual welfare or derive an individual 

welfare function? 
 > Does simple aggregation of individual welfare become a social welfare 

function? 
 > How could we quantify marginal welfare loss due to congestion? 
 > Does travel cost function monotonically increase by distance? 
 > Is it possible to combine an Integer Linear Programming with a congestion 

cost function?              



Note 
 

1) Services and goods both create utility or satisfy a want (Webster's Third New International Dictionary). 
For simplicity, in this paper, services are treated as intangible goods, and goods and services are used 
interchangeably. 

 

2) In this case, it is assumed the total demand curve is the vertical sum of individual demand due to equal 
availability of the public good to everyone. It must also be assumed that each person accurately 
reveals her/his willingness to pay for the output of the public good(Brown and Jackson, 1978, 40-53).   

 

3) Pigovian policy suggests that a government subsidizes to encourage production if the good produces a 
positive externality. If the good creates negative externality, government discourages its production 
through the imposition of a tax(Herber, 1979, 36-43). 
 

4) Here, a facility means a source of club services that are simultaneously consumed by many users but 
are subject to congestion. The more people who use the facility, the less is the welfare each one 
obtains from it. This notion of a club good was originally coined by Buchanan(Buchanan 1965, 1-14).   

 

5) In the case of private services, convex relationships between service levels and number of users are 
assumed caused by complete congestibility, in other words, dW/dn<0,  and d2W/dn2>0. While in 
pure public services, effective service levels may be constant regardless of user size. Theoretically, a 
welfare loss due to congestion effects in impure public services can be explained by <Figure 1>. Let 
W is individual welfare, N is number of users. Let W=f(n)=en2+bn+c. Then aggregate welfare loss 
due to congestion effects will be a=cn- INT _{ 0}^{ n}( { en}^{2 } +bn+c)dn  . Welfare diminution 
is also occurred through travel costs. In <Figure 2>, D is distance from a facility, W is welfare level, 
d is the service threshold. In this case, W and T(travel costs) both are functions of distance from the 
origin of the facility. Then the aggregate net welfare at d* is  INT _{ 0}^{d* }W(d)dd- INT 
_{ 0}^{d* }T(d)dd.       
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         <Figure 1> Congestion Effects                        <Figure 2> Transportation Effects   
 
 
6) Compare this with the transformation function in general equilibrium analysis(see, Boadway 1980, 

131-7). 

 

7) When travel is restricted to take place on a network, the distance between two nodes is used the 
shortest distance. Other important distance measures include Euclidean distance and rectilinear 
distance(see, Handler and Mirchandani, 1979, 3-4). 

 

8) For a detailed discussions, see ReVelle and Swain, 1970, 33. 
 

9) See Mueller(1989), for more detailed explanation of the welfare loss and additive nature of the social 
welfare function.   
 

10) For more details, see Handler and Mirchandani 1979, 47-70, Kaufman 1977, 26-83, Plane and 
McMillan 1971, chap. 3, Taha 1981, 41-70. 
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